精英家教网 > 高中数学 > 题目详情
如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=
π
2
,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.求证:
(Ⅰ)EC⊥CD;
(Ⅱ)求证:AG∥平面BDE;
(Ⅲ)求:几何体EG-ABCD的体积.
考点:棱柱、棱锥、棱台的体积,直线与平面平行的判定
专题:综合题,空间位置关系与距离
分析:(Ⅰ)利用面面垂直的性质,证明EC⊥平面ABCD,利用线面垂直的性质证明EC⊥CD;
(Ⅱ)在平面BCEG中,过G作GN⊥CE交BE于M,连DM,证明四边形ADMG为平行四边形,可得AG∥DM,即可证明AG∥平面BDE;
(Ⅲ)利用分割法即可求出几何体EG-ABCD的体积.
解答: (Ⅰ)证明:由平面ABCD⊥平面BCEG,
平面ABCD∩平面BCEG=BC,CE⊥BC,CE?平面BCEG,
∴EC⊥平面ABCD,…(3分)
又CD?平面BCDA,故EC⊥CD…(4分)
(Ⅱ)证明:在平面BCEG中,过G作GN⊥CE交BE于M,连DM,
则由已知知;MG=MN,MN∥BC∥DA,且MN=AD=
1
2
BC

∴MG∥AD,MG=AD,故四边形ADMG为平行四边形,∴AG∥DM…(6分)
∵DM?平面BDE,AG?平面BDE,∴AG∥平面BDE…(8分)
(Ⅲ)解:VEG-ABCD=VD-BCEG+VG-ABD=
1
3
SBCEG•DC+
1
3
S△ABD•BG
…(10分)
=
1
3
×
2+1
2
×2×2+
1
3
×
1
2
×1×2×1=
7
3
…(12分)
点评:本题考查面面垂直、线面平行,考查几何体体积的计算,考查学生分析解决问题的能力,正确运用面面垂直、线面平行的判定定理是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知{an}是各项为正数的等比数列,且满足a2•a3=8a1
(1)求a4
(2)设bn=log2an
①求证:{bn}是等差数列;
②设b1=9,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F1(-c,0)(c>0)到圆C:(x-2)2+(y-4)2=1上任意一点距离的最大值为6,且过椭圆右焦点F2(c,0)与上顶点的直线与圆O:x2+y2=
1
2
相切.
(1)求椭圆E的方程;
(2)若直线l:y=-x+m与椭圆E交于A,B两点,当以AB为直径的圆与y轴相切时,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinωx-2sin2
ωx
2
+m(ω>0)的最小正周期为3π,且当x∈[0,π]时,函数f(x)的最小值为0.
(1)求函数f(x)的表达式;
(2)在△ABC中,角角A、B、C所对的边分别为a、b、c,若f(c)=1且a+b=10,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an=
n
3n
,求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知PA⊥矩形ABCD所在的平面,M、N分别为AB、PC的中点,∠PDA=45°,AB=2,AD=1.
(Ⅰ)求证:MN∥平面PAD;
(Ⅱ)求证:平面PMC⊥平面PCD;
(Ⅲ)求三棱锥M-PCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,直棱柱ABCD-A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.
(Ⅰ)若P是A1B1的中点,求证:DP∥平面ACB1平行;
(Ⅱ)求证:平面ACC1A1⊥平面BB1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

实数m为何值时,复数z=(m2+5m+6)+(m2-2m-15)i 对应的点在:
(1)x轴上方;
(2)直线x+y+5=0上.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=log2x,则f(3)+f(
1
3
)=
 

查看答案和解析>>

同步练习册答案