精英家教网 > 高中数学 > 题目详情
已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F1(-c,0)(c>0)到圆C:(x-2)2+(y-4)2=1上任意一点距离的最大值为6,且过椭圆右焦点F2(c,0)与上顶点的直线与圆O:x2+y2=
1
2
相切.
(1)求椭圆E的方程;
(2)若直线l:y=-x+m与椭圆E交于A,B两点,当以AB为直径的圆与y轴相切时,求m的值.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)由题意,
(-c-2)2+42
+1=6,可得c=1,过椭圆右焦点F2(c,0)与上顶点的直线与圆O:x2+y2=
1
2
相切,可求b,从而可得椭圆E的方程;
(2)l:y=-x+m与椭圆E联立,因为以AB为直径的圆与y轴相切,所以圆心到y轴的距离即圆心横坐标等于半径,由弦长公式可求得|AB|,从而可得半径,利用韦达定理及中点坐标公式可求得m的值.
解答: 解:(1)由题意,
(-c-2)2+42
+1=6,
∵c>0,∴c=1,
过椭圆右焦点F2(c,0)与上顶点的直线方程为
x
1
+
y
b
=1
,即bx+y-b=0,
∵过椭圆右焦点F2(c,0)与上顶点的直线与圆O:x2+y2=
1
2
相切,
|-b|
1+b2
=
2
2

∴b=1,
∴a=
2

∴椭圆E的方程为
x2
2
+y2=1

(2)直线l:y=-x+m与椭圆E联立可得3x2-4mx+2m2-2=0,△>0,得m2<3.
设A(x1,y1),B(x2,y2),则x1+x2=
4m
3
,x1x2=
2m2-2
3

∴AB的中点横坐标为
2m
3

∵以AB为直径的圆的半径为r=
2
2
|x1-x2|=|
x1+x2
2
|,
∴(x1+x22=8x1x2,即(
4m
3
2=8•
2m2-2
3

∴m2=
3
2
<3,
∴m=±
6
2
点评:本题考查直线与圆锥曲线的位置关系、椭圆标准方程的求解,弦长公式、韦达定理是解决该类问题的基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

圆的极坐标方程分别是ρ=2cosθ和ρ=4sinθ,两个圆的圆心距离是(  )
A、2
B、
2
C、
5
D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是等差数列,{bn}是等比数列,且a1=b1=1,a2+b2=5,a3+b3=9.
(1)求{an}、{bn}的通项公式;
(2)求数列{
an
bn
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinθ,cosθ是关于x的方程x2-ax+a=0(a∈R)的两个根.
(1)求cos3
π
2
-θ)+sin3
π
2
-θ)的值;
(2)求tan(π-θ)-
1
tanθ
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵M=
2
0
0
2
,记绕原点逆时针旋转
π
4
的变换所对应的矩阵为N.
(Ⅰ)求矩阵N;    
(Ⅱ)若曲线C:xy=1在矩阵MN对应变换作用下得到曲线C′,求曲线C′的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)对任意x∈R都有f(x)+f(1-x)=2.
(1)求f(
1
2
)和f(
1
n
)+f(
n-1
n
)(n∈N*)的值;
(2)数列f(x)满足an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1),(n∈N*)求证:数列{an}是等差数列;
(3)bn=
1
an-1
,Sn=
4n
2n+1
,Tn=b12+b22+b32+…+bn2,试比较Tn与Sn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)和圆O:x2+y2=b2
(1)若椭圆上存在一点P,过点P引圆O的两条切线,切点分别为A,B,使∠APB=90°,求椭圆的离心率e的取值范围;
(2)当椭圆的离心率e取第(1)问中的最小值,且椭圆的一条准线方程为x=2时,作一直线l与圆O相切,且交椭圆于M,N两点,A1,A2是x轴上关于原点对称的两点,B1,B2是y轴上关于原点对称的两点,若
A1M
A2M
+
B1N
B2N
=0,求|A1B1|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=
π
2
,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.求证:
(Ⅰ)EC⊥CD;
(Ⅱ)求证:AG∥平面BDE;
(Ⅲ)求:几何体EG-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2x和圆N:(x+2)2+y2=8,直线l与圆N相切,且与抛物线C交于不同的两点A,B.
(Ⅰ)当直线l的斜率为1时,求线段AB的长;
(Ⅱ)设点M和点N关于直线y=x对称,则是否存在直线l使得以AB为直径的圆恰好过点M?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案