精英家教网 > 高中数学 > 题目详情
已知矩阵M=
2
0
0
2
,记绕原点逆时针旋转
π
4
的变换所对应的矩阵为N.
(Ⅰ)求矩阵N;    
(Ⅱ)若曲线C:xy=1在矩阵MN对应变换作用下得到曲线C′,求曲线C′的方程.
考点:几种特殊的矩阵变换
专题:选作题,立体几何
分析:(Ⅰ)利用矩阵变换公式,即可求矩阵N;    
(Ⅱ)求出MN,可得坐标之间的关系,代人方程xy=1整理,即可求曲线C′的方程.
解答: 解:(Ⅰ)由已知得,矩阵N=
2
2
-
2
2
2
2
2
2
.…(3分)
(Ⅱ)矩阵MN=
1-1
11
,它所对应的变换为
x′=x-y
y′=x+y
解得
x=
x′+y′
2
y=
y′-x′
2

把它代人方程xy=1整理,得(y′)2-(x′)2=4,
即经过矩阵MN变换后的曲线C′方程为y2-x2=4…(7分)
点评:本题给出矩阵变换,求曲线C在矩阵M对应变换作用下得到的曲线C'方程,着重考查了矩阵与变换的运算、曲线方程的求法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线ax+y+1=0与连接A(2,3),B(-3,2)的线段相交,则a的取值范围是(  )
A、[-1,2]
B、(-∞,-1]∪[2,+∞)
C、[-2,1]
D、(-∞,-2]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知平行四边形ABCD中,BC=2,BD⊥CD,四边形ADEF为正方形,平面ADEF⊥平面ABCD.
(Ⅰ)求证:ED⊥BC;
(Ⅱ)记CD=x,当三棱锥F-ABD的体积V(x)取得最大值时,求直线EB与平面DBF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}的前n项和为Sn,且Sn=(
an
2
2+
an
2

(1)求数列{an}的通项公式;
(2)若Tn=
a12+1
a12-1
+
a22+1
a22-1
+
a32+1
a32-1
+…+
an2+1
an2-1
,求证:Tn
an
2
+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC.
(1)求证:BE∥平面PDA;
(2)求证:平面PBD⊥平面PBE.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F1(-c,0)(c>0)到圆C:(x-2)2+(y-4)2=1上任意一点距离的最大值为6,且过椭圆右焦点F2(c,0)与上顶点的直线与圆O:x2+y2=
1
2
相切.
(1)求椭圆E的方程;
(2)若直线l:y=-x+m与椭圆E交于A,B两点,当以AB为直径的圆与y轴相切时,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,cos
A+C
2
=
3
3

(Ⅰ)求cosB的值;
(Ⅱ)若a+c=2
6
,b=2
2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an=
n
3n
,求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱柱ABC-A1B1C1中,AB1∩A1B=E,AC1∩A1C=M,F为B1C1的中点,其直观图和三视图如图所示,

(1)求证:EF⊥平面A1BC;
(2)求二面角A-A1B-C的大小.

查看答案和解析>>

同步练习册答案