精英家教网 > 高中数学 > 题目详情

【题目】已知两个不重合的平面α,β和两条不同直线m,n,则下列说法正确的是( )
A.若m⊥n,n⊥α,mβ,则α⊥β
B.若α∥β,n⊥α,m⊥β,则m∥n
C.若m⊥n,nα,mβ,则α⊥β
D.若α∥β,nα,m∥β,则m∥n

【答案】B
【解析】由题意得,A中,若 ,则 ,又 ,∴ 不成立,∴A是错误的;B.若 ,则 ,又 ,∴ 成立,∴B正确;C.当 时,也满足若 ,∴C错误;D.若 ,则 为异面直线,∴D错误,
故答案为:B.

(A)面面垂直,关键是线面垂直,A错;(B)根据垂直于平行平面的两直线平行,可得B正确。(C)面面垂直,关键是线面垂直,C错;(D)面面平行,可得同一平面的两直线平行,m,n得不出一定是在同一平面,D错。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂家具车间造A、B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A、B型桌子分别需要1小时和2小时,漆工油漆一张A、B型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A、B型桌子分别获利润2千元和3千元,试问工厂每天应生产A、B型桌子各多少张,才能获得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一位同学家里订了一份报纸,送报人每天都在在早上5:20~6:40之间将报纸送到达,该同学的爸爸需要早上6:00~7:00之间出发去上班,则这位同学的爸爸在离开家前能拿到报纸的概率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(x∈R)的部分对应值如表:

x

﹣3

﹣2

﹣1

0

1

2

3

4

y

﹣6

0

4

6

6

4

0

﹣6

则一元二次不等式ax2+bx+c>0的解集是(
A.{x|x<﹣2,或x>3}
B.{x|x≤﹣2,或x≥3}
C.{x|﹣2<x<3}
D.{x|﹣2≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,点E是棱PA的中点,PB=PD,平面BDE⊥平面ABCD.
(Ⅰ)求证:PC∥平面BDE;
(Ⅱ)求证:PC⊥平面ABCD;
(Ⅲ)设PC=λAB,试判断平面PAD⊥平面PAB能否成立;若成立,写出λ的一个值(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中,底面ABCD是菱 形,PA=PB,且侧面PAB⊥平面ABCD,点E是AB的中点.

(1)求证:PE⊥AD;
(2)若CA=CB,求证:平面PEC⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的平行六面体ABCD﹣A1B1C1D中,AB=AD=AA1=1,∠BAD=90°,∠BAA1=∠DAA1=60°,则CA1的长=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员成绩由好到差编号为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图给出的四个对应关系,其中构成映射的是( )

A.(1)(2)
B.(1)(4)
C.(1)(2)(4)
D.(3)(4)

查看答案和解析>>

同步练习册答案