精英家教网 > 高中数学 > 题目详情
10.如图所示正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=$\sqrt{2}$,给出下列五个结论
①AC⊥BE
②EF∥平面ABCD
③异面直线AE,BF所成的角为60°
④A1点到面BEF的距离为定值
⑤三棱柱A-BEF的体积为定值
其中正确的结论有:①②④⑤(写出所有正确结论的编号)

分析 ①AC⊥BE,可由线面垂直证两线垂直;
②EF∥平面ABCD,可由线面平行的定义请线面平行;
③由两个极端位置说明两异面直线所成的角不是定值;
④A1点到面DD1B1B距离是定值,所以A1点到面BEF的距离为定值;
⑤三棱锥A-BEF的体积为定值,可证明棱锥的高与底面积都是定值得出体积为定值.

解答 解:①AC⊥BE,由题意及图形知,AC⊥面DD1B1B,故可得出AC⊥BE,此命题正确;
②EF∥平面ABCD,由正方体ABCD-A1B1C1D1的两个底面平行,EF在其一面上,故EF与平面ABCD无公共点,故有EF∥平面ABCD,此命题正确;
③由图知,当F与B1重合时,令上底面顶点为O,则此时两异面直线所成的角是∠A1AO,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是∠OBC1,此二角不相等,故异面直线AE、BF所成的角不为定值,故不正确.
④A1点到面DD1B1B距离是定值,所以A1点到面BEF的距离为定值,正确;
⑤三棱锥A-BEF的体积为定值,由几何体的性质及图形知,三角形BEF的面积是定值,A点到面DD1B1B距离是定值,故可得三棱锥A-BEF的体积为定值,此命题正确.
故答案为:①②④⑤.

点评 本题考查棱柱的结构特征,解答本题关键是正确理解正方体的几何性质,且能根据这些几何特征,对其中的点线面和位置关系作出正确判断.熟练掌握线面平行的判断方法,异面直线所成角的定义以及线面垂直的证明是解答本题的知识保证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知在数列{an}中,首项a1=3,且有2(an+1-an)=an+1•an,则数列{an}的通项公式为an=$\frac{6}{-3n+5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-(a+1)x+3(x∈R,a∈R).
(1)若a=1,写出函数f(x)单调区间;
(2)设函数g(x)=log2x,且x∈[$\frac{1}{2}$,4],若不等式f(g(x))≥$\frac{a+3}{2}$恒成立,求a的取值范围;
(3)已知对任意的x∈(0,+∞)都有lnx≤x-1成立,试利用这个条件证明:当a∈[-2,$\frac{9}{4}$]时,不等式f(x)>ln(x-1)2恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知长方体从同一顶点出发的三条棱长分别为a,b,c,且a,$\frac{b}{2}$,c成等差数列.若其对角线长为$\sqrt{6}$,则b的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为e=$\frac{1}{2}$,以原点为圆心,椭圆短半轴长为半径的圆与直径x-y+$\sqrt{6}$=0相切.
(1)求椭圆C的方程;
(2)设过点(-1,0)的直线l与椭圆C相交于A,B两点,试问在x轴上是否存在一个定点M,使得$\overrightarrow{MA}•\overrightarrow{MB}$恒为定值?若存在,求出该定值及点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某汽车销售店以8万元/辆的价格购进了某品牌的汽车.根据以往的销售分析得出,当售价定为10万元/辆时,每年可销售100辆该品牌的汽车,当每辆的销售每提高1千元时,年销售量就减少2辆.
(1)若要获利最大年利润,售价应定为多少万元/辆?
(2)该销售店为了提高销售业绩,推出了分期付款的促销活动.已知销售一辆该品牌的汽车,若一次性付款,其利润为2万元;若分2期或3期付款,其利润为2.5万元;若分4期或5期付款,其利润为3万元.该销售店对最近分期付款的10位购车情况进行了统计,统计结果如下表.
付款方式一次性分2期分3期分4期分5期
频数11323
若X表示其中任意两辆的利润之差的绝对值,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,正方体ABCD-A1B1C1D1的棱长为1,E为A1B1的中点,给出下列四个命题:
①点E到平面ABC1D1的距离为$\frac{1}{2}$
②直线BC与平面ABC1D1所称角为45°;
③空间四边形ABCD1在该正方体六个面内射影面积的最小值为$\frac{1}{2}$;
④正方体的所有棱中,与AB,CC1均共面的棱共有5条,
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.芜湖市争创“全国文明城市”工作于2015年伊始进入攻坚阶段,其中一项重要考核内容是普通市民对“社会主义核心价值观”知晓情况.教育部门特组织n名在校学生(包括小学生、初中生和高中生)作为调查对象,其中小学生有$\frac{2}{5}$n人;从这n名学生中任意选2名,则至少有1名初中生的概率是$\frac{7}{9}$.
(Ⅰ)若n=10,从n名学生中任意选3人,得到初中生的人数记为ξ,请写出ξ的分布列,并求ξ的数学期望Eξ;
(Ⅱ)记“从n名学生当中任意选2人,至少有1名小学生”为事件A,求P(A)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在公比为2的等比数列{an}中,a2与a4的等差中项是5$\sqrt{3}$.
(Ⅰ)求a1的值;
(Ⅱ)若函数y=|a1|sin($\frac{π}{4}$x+φ),|φ|<π,的一部分图象如图所示,M(-1,|a1|),N(3,-|a1|)为图象上的两点,设∠MPN=β,其中P与坐标原点O重合,0<β<π,求tan(φ-β)的值.

查看答案和解析>>

同步练习册答案