精英家教网 > 高中数学 > 题目详情
19.芜湖市争创“全国文明城市”工作于2015年伊始进入攻坚阶段,其中一项重要考核内容是普通市民对“社会主义核心价值观”知晓情况.教育部门特组织n名在校学生(包括小学生、初中生和高中生)作为调查对象,其中小学生有$\frac{2}{5}$n人;从这n名学生中任意选2名,则至少有1名初中生的概率是$\frac{7}{9}$.
(Ⅰ)若n=10,从n名学生中任意选3人,得到初中生的人数记为ξ,请写出ξ的分布列,并求ξ的数学期望Eξ;
(Ⅱ)记“从n名学生当中任意选2人,至少有1名小学生”为事件A,求P(A)的最大值.

分析 (I)设这n名学生中有初中生、高中生分别有x,y人,则x+y=$\frac{3}{5}$n,$\frac{{∁}_{x}^{1}{∁}_{n-x}^{1}+{∁}_{x}^{2}}{{∁}_{n}^{2}}$=$\frac{7}{9}$.当n=10时,代入上式化简可得:小学生、初中生和高中生人数分别为4,5,1.
ξ的取值可能为0,1,2,3.再利用“超几何分别”可得分布列及其数学期望.
(II)设这n名学生中有初中生、高中生分别有x,y人,则x+y=$\frac{3}{5}$n,$\frac{{∁}_{x}^{1}{∁}_{n-x}^{1}+{∁}_{x}^{2}}{{∁}_{n}^{2}}$=$\frac{7}{9}$.n为5的正正整数倍,n=5不满足上式,因此n最小值为10.又P(A)=$\frac{{∁}_{\frac{2}{5}n}^{1}{∁}_{\frac{3}{5}n}^{1}+{∁}_{\frac{2}{5}n}^{2}}{{∁}_{n}^{2}}$,利用其单调性即可得出.

解答 解:(I)设这n名学生中有初中生、高中生分别有x,y人,则x+y=$\frac{3}{5}$n,$\frac{{∁}_{x}^{1}{∁}_{n-x}^{1}+{∁}_{x}^{2}}{{∁}_{n}^{2}}$=$\frac{7}{9}$.
当n=10时,x+y=6,$\frac{{∁}_{x}^{1}{∁}_{10-x}^{1}+{∁}_{x}^{2}}{{∁}_{10}^{2}}$=$\frac{7}{9}$.化为(x-5)(x-14)=0,又x<6,解得x=5,
∴y=1.
∴n=10时,小学生、初中生和高中生人数分别为4,5,1.
ξ的取值可能为0,1,2,3.
P(ξ=0)=$\frac{{∁}_{5}^{3}}{{∁}_{10}^{3}}$=$\frac{1}{12}$,P(ξ=1)=$\frac{{∁}_{5}^{1}{∁}_{5}^{2}}{{∁}_{10}^{3}}$=$\frac{5}{12}$,P(ξ=2)=$\frac{{∁}_{5}^{2}{∁}_{5}^{1}}{{∁}_{10}^{3}}$=$\frac{5}{12}$,P(ξ=3)=$\frac{{∁}_{5}^{3}}{{∁}_{10}^{3}}$=$\frac{1}{12}$.
ξ的分布列为:

 ξ 0 1 2 3
 P $\frac{1}{12}$ $\frac{5}{12}$ $\frac{5}{12}$ $\frac{1}{12}$
E(ξ)=$0×\frac{1}{12}$+1×$\frac{5}{12}$+2×$\frac{5}{12}$+3×$\frac{1}{12}$=$\frac{3}{2}$.
(II)设这n名学生中有初中生、高中生分别有x,y人,则x+y=$\frac{3}{5}$n,$\frac{{∁}_{x}^{1}{∁}_{n-x}^{1}+{∁}_{x}^{2}}{{∁}_{n}^{2}}$=$\frac{7}{9}$.
n为5的正正整数倍,n=5不满足上式,因此n最小值为10.
又P(A)=$\frac{{∁}_{\frac{2}{5}n}^{1}{∁}_{\frac{3}{5}n}^{1}+{∁}_{\frac{2}{5}n}^{2}}{{∁}_{n}^{2}}$=$\frac{16{n}^{2}-10n}{25{n}^{2}-25n}$=$\frac{16n-10}{25n-25}$=$\frac{2}{25}(8+\frac{3}{n-1})$≤$\frac{2}{25}(8+\frac{3}{9})$=$\frac{2}{3}$.

点评 本题考查了分层抽样、古典概率计算公式、组合数的计算公式、“超几何分布”的分布列及其数学期望,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x3-$\frac{3}{2}$ax2+4,其中a>0.
(1)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)若f(x)>0对x∈[-1,1]恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图所示正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=$\sqrt{2}$,给出下列五个结论
①AC⊥BE
②EF∥平面ABCD
③异面直线AE,BF所成的角为60°
④A1点到面BEF的距离为定值
⑤三棱柱A-BEF的体积为定值
其中正确的结论有:①②④⑤(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-3
(1)求函数g(x)=exf(x)的极值;
(2)过点A(2,t),存在与曲线y=x(f(x)-9)相切的3条切线,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2ax+$\frac{2a-1}{x}$+lnx.
(Ⅰ)若函数f(x)在x=2处取得极值,求f(x)的单调递增区间;
(Ⅱ)若函数f(x)在(0,+∞)上是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=log4(4x+1)-(k-1)x(x∈R)为偶函数.
(1)求常数k的值,并指出当x取何值时函数f(x)的值最小?并求出f(x)的最小值;
(2)设g(x)=log4(a•2x-$\frac{4}{3}$a)(a≠0),且函数f(x)与g(x)的图象有公共点,求实数a的取值范围
(3)指出实数a不同取值时,(2)中函数图象交点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.据统计某校学生在上学路上所需时间最多不超过120分钟,该校随机抽取部分新入校的学生就其上学路上所需时间(单位:分钟)进行调查,并将所得数据绘制成频率分布直方图.
(1)为减轻学生负担,学校规定上学路上所需时间不少于1小时的学生可申请在校内住宿,请根据抽样数据估计该校600名新生中有多少学生可以申请在校内住宿.
(2)从新入校的学生中任选4名学生,以频率分布直方图中的频率作为概率,这4名学生中上学所需时间少于20分钟的人数记为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.根据下面数列的前几项的值,写出数列的一个通项公式:
(1)3,5,9,17,33;
(2)$\frac{2}{3}$,$\frac{4}{15}$,$\frac{6}{35}$,$\frac{8}{63}$,$\frac{10}{99}$;
(3)2,-6,12,-20,30,-42;
(4)0,5,0,5,0,5;
(5)1,0,1,0,1;
(6)9,99,999,9999;
(7)7,77,777,7777.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=x3+3ax2+3[(a+2)x+1]有极大值又有极小值,则a的取值范围是(  )
A.(-1,2)B.f(-2,1)C.(-∞,-1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

同步练习册答案