精英家教网 > 高中数学 > 题目详情
11.据统计某校学生在上学路上所需时间最多不超过120分钟,该校随机抽取部分新入校的学生就其上学路上所需时间(单位:分钟)进行调查,并将所得数据绘制成频率分布直方图.
(1)为减轻学生负担,学校规定上学路上所需时间不少于1小时的学生可申请在校内住宿,请根据抽样数据估计该校600名新生中有多少学生可以申请在校内住宿.
(2)从新入校的学生中任选4名学生,以频率分布直方图中的频率作为概率,这4名学生中上学所需时间少于20分钟的人数记为X,求X的分布列和期望.

分析 (1)由频率分布直方图的性质可得:20×(0.0030+0.0021+0.0014)×600.即可估计该校600名新生中可以申请在校内住宿的人数.
(2)任选4名学生中,而上学所需时间少于20分钟的人数=20×0.0125×4=1.可得X~B$(4,\frac{1}{4})$.利用二项分布列及其数学期望公式即可得出.

解答 解:(1)由频率分布直方图的性质可得:20×(0.0030+0.0021+0.0014)×600=78.
因此根据抽样数据估计该校600名新生中有78名学生可以申请在校内住宿.
(2)任选4名学生中,而上学所需时间少于20分钟的人数=20×0.0125×4=1.
∴X~B$(4,\frac{1}{4})$.
由题意可得X的取值为0,1,2,3,4.
P(X=k)=${∁}_{4}^{k}(\frac{1}{4})^{k}(\frac{3}{4})^{4-k}$,(k=0,1,2,3,4).
E(X)=$4×\frac{1}{4}$=1.

点评 本题考查了频率分布直方图的性质、二项分布列及其数学期望公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-(a+1)x+3(x∈R,a∈R).
(1)若a=1,写出函数f(x)单调区间;
(2)设函数g(x)=log2x,且x∈[$\frac{1}{2}$,4],若不等式f(g(x))≥$\frac{a+3}{2}$恒成立,求a的取值范围;
(3)已知对任意的x∈(0,+∞)都有lnx≤x-1成立,试利用这个条件证明:当a∈[-2,$\frac{9}{4}$]时,不等式f(x)>ln(x-1)2恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,正方体ABCD-A1B1C1D1的棱长为1,E为A1B1的中点,给出下列四个命题:
①点E到平面ABC1D1的距离为$\frac{1}{2}$
②直线BC与平面ABC1D1所称角为45°;
③空间四边形ABCD1在该正方体六个面内射影面积的最小值为$\frac{1}{2}$;
④正方体的所有棱中,与AB,CC1均共面的棱共有5条,
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.芜湖市争创“全国文明城市”工作于2015年伊始进入攻坚阶段,其中一项重要考核内容是普通市民对“社会主义核心价值观”知晓情况.教育部门特组织n名在校学生(包括小学生、初中生和高中生)作为调查对象,其中小学生有$\frac{2}{5}$n人;从这n名学生中任意选2名,则至少有1名初中生的概率是$\frac{7}{9}$.
(Ⅰ)若n=10,从n名学生中任意选3人,得到初中生的人数记为ξ,请写出ξ的分布列,并求ξ的数学期望Eξ;
(Ⅱ)记“从n名学生当中任意选2人,至少有1名小学生”为事件A,求P(A)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.随着有车族人数的增加,越来越多的人都在关注汽油价格的信息,某机构调查市民获取有关汽车价格的信息渠道得到如下数据,按照信息来里利用分成抽样的方法抽取50人,其中获取信息的渠道为看电视的有27人.
获取消息渠道看电视收听广播其它渠道
男性480m180
女性38421090
(Ⅰ)求m的值;
(Ⅱ)从“其它渠道”中按性别比例抽取一个容量为6的样本,再从这6人中抽取3人,求抽取的3人中至少1人是女性的概率;
(Ⅲ)现从(Ⅱ)中确定的样本中每次都抽取1人,直到抽出所有女性为止,设所要抽取的人为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=-xlnx.
(1)求函数f(x)的极值;
(2)若方程f(x)+x2=mx2在区间[1,e2]内唯一实数解,求实数m的取值范围.
(3)若k∈Z,且k<$\frac{f(x)+x}{x-1}$对任意的x>1恒成立,试求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知sinx=$\frac{\sqrt{5}}{5}$,角x终边在第一象限,求tanx$\frac{x}{2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在公比为2的等比数列{an}中,a2与a4的等差中项是5$\sqrt{3}$.
(Ⅰ)求a1的值;
(Ⅱ)若函数y=|a1|sin($\frac{π}{4}$x+φ),|φ|<π,的一部分图象如图所示,M(-1,|a1|),N(3,-|a1|)为图象上的两点,设∠MPN=β,其中P与坐标原点O重合,0<β<π,求tan(φ-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax3+bx+2,在X=2处取得极值-14.
(1)求a,b的值;
(2)若f(x)≥kx在(0,2]上恒成立,求k的取值范围.

查看答案和解析>>

同步练习册答案