精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=log4(4x+1)-ax,(x∈R)是偶函数,
(1)求a的值
(2)若方程f(x)-k=0有解,求k的取值范围.

分析 (1)由偶函数的定义可得f(-x)=f(x),利用对数的运算性质整理可得x=2ax对任意x∈R恒成立,则a可求;
(2)由f(x)-k=0,分离参数k,然后利用对数的运算性质结合基本不等式求得k的范围.

解答 解:(1)由函数f(x)=log4(4x+1)-ax,(x∈R)是偶函数,
可知对任意x,有f(-x)=f(x),
即$lo{g}_{4}({4}^{-x}+1)+ax=lo{g}_{4}({4}^{x}+1)-ax$,得$lo{g}_{4}\frac{{4}^{x}+1}{{4}^{-x}+1}=2ax$,
∴$lo{g}_{4}{4}^{x}=2ax$,即x=2ax对任意x∈R恒成立.
得a=$\frac{1}{2}$;
(2)由f(x)-k=0得:${log_4}({4^x}+1)-\frac{1}{2}x-k=0$,
∴${log_4}({4^x}+1)-\frac{1}{2}x=k$,得$k={log_4}({4^x}+1)-\frac{1}{2}x={log_4}\frac{{{4^x}+1}}{2^x}={log_4}({{2^x}+\frac{1}{2^x}})$.
∵${2^x}+\frac{1}{2^x}≥2$,∴k≥2.
故要使方程f(x)-k=0有解,k的取值范围是k≥2.

点评 本题考查函数奇偶性的性质,考查函数的零点与方程根的关系,训练了利用基本不等式求最值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若平面向量$\overrightarrow a$与$\overrightarrow b$满足:$|\overrightarrow a|=2,|\overrightarrow b|=1$,$|\overrightarrow a+\overrightarrow b|=\sqrt{7}$,则$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.计算:1+2i+3i2+4i3+5i4+…+100i99=(  )(i是虚数单位)
A.0B.1C.-25-25iD.-50-50i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知p:?x∈[$\frac{1}{2}$,2],2x<m(x2+1),q:函数f(x)=4x-2x+1-1+m存在零点,若“p且q”为真命题,则实数m的取值范围为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图所示的流程图,则输出的a的值等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知.命题s:函数f(x)=ln(mx2-2x+1)的定义域为全体实数;
命题t:方程x2+(m-3)x+m=0的一根在(0,1)内,另一根在(1,2)内若s∨t为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.家政服务公司根据用户满意程度将本公司家政服务员分为两类,其中A类服务员12名,B类服务员x名.
(Ⅰ)若采用分层抽样的方法随机抽取20名家政服务员参加技术培训,抽取到B类服务员的人数是12,求x的值;
(Ⅱ)某客户来公司聘请2名家政服务员,但是由于公司人员安排已经接近饱和,只有3名A类家政服务员和2名B类家政服务员可供选择.求该客户最终聘请的家政服务员中既有A类又有B类的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知{an}是等比数列,a1=1,a3-a2=2,则此数列的公比q=-1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=sin({ωx+φ})({ω>0,|φ|<\frac{π}{2}})$的图象过点$({0,\frac{1}{2}})$,若$f(x)≤f({\frac{π}{12}})$对x∈R恒成立,则ω的最小值为(  )
A.2B.10C.4D.16

查看答案和解析>>

同步练习册答案