精英家教网 > 高中数学 > 题目详情
已知过点P(1,4)的直线L在两坐标轴上的截距均为正值,当两截距之和最小时,求直线L的方程.
考点:直线的截距式方程
专题:综合题,直线与圆
分析:利用基本不等式确定直线斜率,从而确定直线方程
解答: 设 L:y-4=k(x-1),(k<0)L在两轴上的截距分别为a,b.
则a=1-
4
k
,b=4-k,因为 k<0,-k>0,∴-
4
k
>0
∴a+b=5+(-k)+-
4
k
5+2=5+4=9.
当且仅当-k=-
4
k
即 k=-2 时 a+b 取得最小值9.
即所求的直线方程为y-4=-2(x-1),
即 2x+y-6=0.
点评:本题考查直线方程与基本不等式的综合应用
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(log4x)2-
5
2
log4
x+1.
(1)当x∈[2,4]时,求该函数的值域;
(2)若f(x)≥mlog4x对于x∈[4,16]恒成立,求m有取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)0.064 -
1
3
-(
7
8
0+16 
3
4
+(
2
33
6
(2)lg
1
2
-lg
5
8
+lg12.5+log23•log38.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱柱ABC-A1B1C1的底面边长为a,侧棱长为
2
a,则AC1与侧面ABB1A1所成的角的正弦值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过点P(3,2),且与x轴、y轴的正半轴分别交于A,B两点,如图所示,则△ABO的面积的最小值为(  )
A、6B、12C、24D、18

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程:log3(x2-3)=1+log3(x-
5
3
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-ax-3(a∈R).
(Ⅰ)若a=-1,求函数f(x)的单调区间;
(Ⅱ) 求证:
ln2
2
×
ln3
3
×
ln4
4
×…×
lnn
n
1
n
(n≥2,n∈N*
(Ⅲ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2[f′(x)+
m
2
](f′(x)
是f(x)的导函数)在区间(t,3)上总不是单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:x+y-2=0,一束光线从点P(0,1+
3
)以120°的倾斜角射到直线l上反射.
(1)求反射光线所在直线m的方程;
(2)若M是圆C:(x-1)2+(y+1)2=1上一点,求点M到直线m的距离的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的表面积是(  )
A、18
B、2
3
C、12+
3
D、18+2
3

查看答案和解析>>

同步练习册答案