精英家教网 > 高中数学 > 题目详情
5.已知复数z满足$\frac{1+i}{1-i}$•z=3+4i,则|z|=(  )
A.2$\sqrt{6}$B.$\sqrt{7}$C.5$\sqrt{2}$D.5

分析 利用复数的运算法则、模的计算公式即可得出.

解答 解:$\frac{1+i}{1-i}$=$\frac{(1+i)^{2}}{(1-i)(1+i)}$=$\frac{2i}{2}$=i,
复数z满足$\frac{1+i}{1-i}$•z=3+4i,∴iz=3+4i,∴-i•iz=-i(3+4i),∴z=4-3i,
则|z|=$\sqrt{{4}^{2}+(-3)^{2}}$=5.
故选:D.

点评 本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0)的最小正周期为π,则“f(-x)=f(x)”是“φ=$\frac{π}{4}$”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某公司新招聘8名员工,随机平均分配给下属的甲、乙两个部门,则事件“两名英语翻译人员不在同一部门,另外三名电脑编程人员也不在同一部门”发生的概率为(  )
A.$\frac{18}{35}$B.$\frac{15}{35}$C.$\frac{12}{35}$D.$\frac{9}{35}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=0,则$\overrightarrow{a}$-$\overrightarrow{b}$的模等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.把函数$f(x)=\sqrt{2}sin(2x-\frac{π}{4})$的图象上每个点的横坐标扩大到原来的4倍,再向左平移$\frac{π}{3}$,得到函数g(x)的图象,则函数g(x)的一个单调递减区间为(  )
A.$[-\frac{5π}{6},\frac{7π}{6}]$B.$[\frac{7π}{6},\frac{19π}{6}]$C.$[-\frac{2π}{3},\frac{4π}{3}]$D.$[-\frac{17π}{6},-\frac{5π}{6}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点为F1,左顶点为A,过F1作x轴的垂线交双曲线于P、Q两点,过P作PM垂直QA于M,过Q作QN垂直PA于N,设PM与QN的交点为B,若B到直线PQ的距离大于a+$\sqrt{{a}^{2}+{b}^{2}}$,则该双曲线的离心率取值范围是(  )
A.(1-$\sqrt{2}$)B.($\sqrt{2}$,+∞)C.(1,2$\sqrt{2}$)D.(2$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$a={(\sqrt{2})^{\frac{4}{3}}}$,$b={2^{\frac{2}{5}}}$,$c={9^{\frac{1}{3}}}$,则(  )
A.b<a<cB.a<b<cC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.双曲线${x^2}-\frac{y^2}{m}=1$的离心率大于$\sqrt{2}$的充要条件是(  )
A.m>1B.$m>\frac{1}{2}$C.m>2D.m≥1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$\overrightarrow{a}$=(2,m),$\overrightarrow{b}$=(1,-2),若$\overrightarrow{a}$∥($\overrightarrow{a}$+2$\overrightarrow{b}$),则m的值是(  )
A.-4B.4C.0D.-2

查看答案和解析>>

同步练习册答案