精英家教网 > 高中数学 > 题目详情
16.某公司新招聘8名员工,随机平均分配给下属的甲、乙两个部门,则事件“两名英语翻译人员不在同一部门,另外三名电脑编程人员也不在同一部门”发生的概率为(  )
A.$\frac{18}{35}$B.$\frac{15}{35}$C.$\frac{12}{35}$D.$\frac{9}{35}$

分析 分类讨论:①甲部门要2个2电脑编程人员和一个翻译人员;②甲部门要1个电脑编程人员和1个翻译人员.分别求得这2个方案的方法数,再利用分类计数原理,可得结论,从而求出满足条件的概率即可.

解答 解:由题意可得,有2种分配方案:
①甲部门要2个电脑编程人员,则有3种情况;
翻译人员的分配有2种可能;再从剩下的3个人中选一人,有3种方法.
根据分步计数原理,共有3×2×3=18种分配方案.
②甲部门要1个电脑编程人员,则方法有3种;
翻译人员的分配方法有2种;再从剩下的3个人种选2个人,
方法有3种,共3×2×3=18种分配方案.
由分类计数原理,可得不同的分配方案共有18+18=36种,
故满足条件的概率是p=$\frac{36}{{C}_{8}^{4}}$=$\frac{18}{35}$,
故选:A.

点评 本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数f(x)=$\sqrt{{2}^{x}-\frac{1}{2}}$+$\frac{3}{x+1}$的定义域为{x|x>-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若正方体A1A2A3A4-B1B2B3B4的棱长为1,则集合{x|x=$\overrightarrow{{A}_{1}{B}_{1}}$•$\overrightarrow{{A}_{i}{B}_{j}}$,i∈{1,2,3,4},j∈1,2,3,4}}中元素的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等比数列{an}满足a1+a2=6,a4+a5=48,则数列{an}前10项的和为S10=(  )
A.1022B.1023C.2046D.2047

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若有穷数列{an}(n≥3)同时满足:
(1)$\sum_{k=1}^{n}$ak=0;(2)$\sum_{k=1}^{n}$|ak|=1;则称数列{an}为n阶好数列.
给出以下命题(以下数列项数都大于或等于3):
①不存在有穷常数列,它是好数列;
②存在等差数列,它是好数列;
③若有穷等比数列{an}是2k阶好数列(k≥2),则它的公比只能等于-l;
④存在各项非负的2013阶好数列.
以上所有正确命题的序号为①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知正项等比数列{an}中有$\root{21}{{a}_{1993}•{a}_{1994}•{a}_{1995}…{a}_{2013}}$=$\root{4005}{{a}_{1}•{a}_{2}•{a}_{3}…{a}_{4005}}$,则在等差数列{bn}中,类似的正确的结论有$\frac{{b}_{1993}+{b}_{1994}+…+{b}_{2013}}{21}$=$\frac{{b}_{1}+{b}_{2}+…+{b}_{4005}}{4005}$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在等比数列{an}中,a2a3a4=27,a7=27,则首项a1=(  )
A.$±\sqrt{3}$B.±1C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数z满足$\frac{1+i}{1-i}$•z=3+4i,则|z|=(  )
A.2$\sqrt{6}$B.$\sqrt{7}$C.5$\sqrt{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,PO=1,M为PD的中点.
(Ⅰ)证明:PB∥平面ACM;
(Ⅱ)设直线AM与平面ABCD所成的角为α,二面角M-AC-B的大小为β,求sinαcosβ的值.

查看答案和解析>>

同步练习册答案