精英家教网 > 高中数学 > 题目详情
9.已知集合A={x∈R||x|<2},B={x∈R|x+1≥0},则A∩B=(  )
A.(-2,1]B.[-1,2)C.[-1,+∞)D.(-2,+∞)

分析 由绝对值不等式的解法求出A,由交集的运算求出A∩B.

解答 解:由题意知,A={x∈R||x|<2}={x|-2<x<2}=(-2,2),
B={x∈R|x+1≥0}={x|x≥-1}=[-1,+∞),
则A∩B=[-1,2),
故选B

点评 本题考查交集及其运算,以及绝对值不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A,B,C所对的边分别为a,b,c,若B=$\frac{π}{2}$,a=$\sqrt{6}$,sin2B=2sinAsinC,则△ABC的面积S△ABC=(  )
A.$\frac{3}{2}$B.3C.$\sqrt{6}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列选项中,说法正确的个数是(  )
(1)命题“?x0∈R,x${\;}_{0}^{2}$-x0≤0”的否定为“?x∈R,x2-x>0”;
(2)命题“在△ABC中,A>30°,则sinA>$\frac{1}{2}$”的逆否命题为真命题;
(3)若统计数据x1,x2,…,xn的方差为1,则2x1,2x2,…,2xn的方差为2;
(4)若两个随机变量的线性相关性越强,则相关系数绝对值越接近1.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an},满足a1=1,${a_{n+1}}=\frac{{3{a_n}}}{{2{a_n}+3}}$,n∈N*
(Ⅰ)求证:数列$\left\{{\frac{1}{a_n}}\right\}$为等差数列;
(Ⅱ)设${T_{2n}}=\frac{1}{{{a_1}{a_2}}}-\frac{1}{{{a_2}{a_3}}}+\frac{1}{{{a_3}{a_4}}}-\frac{1}{{{a_4}{a_5}}}+…+\frac{1}{{{a_{2n-1}}{a_{2n}}}}-\frac{1}{{{a_{2n}}{a_{2n+1}}}}$,求T2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.(x+y+z)4的展开式共(  )项.
A.10B.15C.20D.21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知抛物线y2=2px(p>0)的焦点为F,过点M(p,0)的直线交抛物线于A,B两点,若$\overrightarrow{AM}$=2$\overrightarrow{MB}$,则$\frac{|AF|}{|BF|}$=(  )
A.2B.$\frac{5}{2}$C.$\sqrt{2}$D.与p有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2sin2x+cos(2x-$\frac{π}{3}$).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在(0,$\frac{π}{2}$)上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知一个四棱锥的三视图如图所示,则此四棱锥的体积为$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xoy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=2cosθ\\ y=2\sqrt{3}sinθ\end{array}\right.$(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴,与直角坐标系xoy取相同的单位长度建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ-4sinθ.
(1)化曲线C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)设曲线C2与x轴的一个交点的坐标为P(m,0)(m>0),经过点P作斜率为1的直线l,l交曲线C2于A,B两点,求线段AB的长.

查看答案和解析>>

同步练习册答案