| A. | 2 | B. | $\frac{5}{2}$ | C. | $\sqrt{2}$ | D. | 与p有关 |
分析 设直线方程为x=my+p,代入y2=2px,可得y2-2pmy-2p2=0,利用向量条件,求出A,B的坐标,利用抛物线的定义,即可得出结论.
解答 解:设直线方程为x=my+p,代入y2=2px,可得y2-2pmy-2p2=0
设A(x1,y1),B(x2,y2),则y1+y2=2pm,y1y2=-2p2,
∵$\overrightarrow{AM}$=2$\overrightarrow{MB}$,∴(p-x1,-y1)=2(x2-p,y2),
∴x1=-2x2+p,y1=-2y2,
可得y2=p,y1=-2p,
∴x2=$\frac{1}{2}$p,x1=2p,
∴$\frac{|AF|}{|BF|}$=$\frac{2p+\frac{1}{2}p}{\frac{1}{2}p+\frac{1}{2}p}$=$\frac{5}{2}$,
故选B.
点评 本题考查直线与抛物线的位置关系,考查向量知识,考查抛物线的定义,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,1] | B. | [-1,2) | C. | [-1,+∞) | D. | (-2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({\frac{π}{4},\frac{π}{3}})$ | B. | $({-\frac{π}{4},\frac{π}{4}})$ | C. | $({0,\frac{π}{3}})$ | D. | $({-\frac{π}{3},0})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | (-$\sqrt{3}$,1) | C. | (-∞,-$\sqrt{3}$)∪(1,+∞) | D. | (-∞,-$\sqrt{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com