精英家教网 > 高中数学 > 题目详情

设曲线上的点到点的距离的最小值为,若,,
(1)求数列的通项公式;
(2)求证:
(3)是否存在常数,使得对,都有不等式:成立?请说明理由.

(1) (2)先证,累加即得证.(3)存在常数,对,都有不等式:成立.(M取值不唯一)

解析试题分析:(1)设点,则,∴,
, ∴ 当时,取得最小值,且,
,∴,即, 将代入
两边平方,得,又,
∴数列是首项为,公差为的等差数列, ∴,
,∴
(2)∵,∴
,∴ ∴

将以上个不等式相加,得.
(Ⅲ)由(1)得,当时, ,
,

,

.
∴存在常数,对,都有不等式:成立.(M取值不唯一)
考点:数列与不等式的综合;等差数列的通项公式;数列与函数的综合.
点评:本题考查数列的通项,考查数列与不等式的综合,考查放缩法的运用,解题的关键是根据目标,适当放缩,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设数列满足,其中为实数,且
(1)求证:时数列是等比数列,并求
(2)设,求数列的前项和
(3)设,记,设数列的前项和为,求证:对任意正整数都有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,,前项的和为,对任意的总成等差数列.
(1)求的值并猜想数列的通项公式
(2)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列 的前项和为,设,且.
(1)证明{}是等比数列;
(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的首项为,对任意的,定义.
(Ⅰ) 若
(i)求的值和数列的通项公式;
(ii)求数列的前项和
(Ⅱ)若,且,求数列的前项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,且点在直线上。
(1)求数列的通项公式;
(2)求函数的最小值;
(3)设表示数列的前项和。试问:是否存在关于的整式,使得
对于一切不小于2的自然数恒成立?若存在,写出的解析式,并加以证明;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知数列为公差不为的等差数列,为前项和,的等差中项为,且.令数列的前项和为
(Ⅰ)求
(Ⅱ)是否存在正整数成等比数列?若存在,求出所有的的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
在数列中,已知.
(Ⅰ)求数列的通项公式;
(Ⅱ)求证:数列是等差数列;
(Ⅲ)设数列满足,求的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)设数列的前项和为.已知.
(1)写出的值,并求数列的通项公式;
(2)记为数列的前项和,求
(3)若数列满足,求数列的通项公式.

查看答案和解析>>

同步练习册答案