精英家教网 > 高中数学 > 题目详情

已知数列的首项为,对任意的,定义.
(Ⅰ) 若
(i)求的值和数列的通项公式;
(ii)求数列的前项和
(Ⅱ)若,且,求数列的前项的和.

(1) ,,
(2) 当为偶数时,;当为奇数时,

解析试题分析:(Ⅰ) 解:(i),,     ………………2分

时,
=………4分
适合上式,所以.………………5分
(ii)由(i)得:     ……………6分

……………7分
                             …………8分
(Ⅱ)解:因为对任意的
所以数列各项的值重复出现,周期为.        …………9分
又数列的前6项分别为,且这六个数的和为8. ……………10分
设数列的前项和为,则,
时,
,       ……………11分
时,

 ,                    …………12分

所以,当为偶数时,;当为奇数时,. ……………13分
考点:数列的通项公式,数列的求和
点评:解决的关键是对于数列的递推关系的理解和运用,并能结合裂项法求和,以及分情况讨论求和,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设数列满足,若数列满足:,且当 时,
(I) 求 ;
(II)证明:,(注:).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下图是一个按照某种规律排列出来的三角形数阵

假设第行的第二个数为
(1)依次写出第六行的所有6个数字(不必说明理由);
(2)写出的递推关系(不必证明),并求出的通项公式
(3)设,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列具有性质:①为整数;②对于任意的正整数,当为偶数时,
;当为奇数时,.
(1)若为偶数,且成等差数列,求的值;
(2)设(N),数列的前项和为,求证:
(3)若为正整数,求证:当(N)时,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前项和为,等差数列满足
(1)分别求数列的通项公式;      
(2)设,求证

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设曲线上的点到点的距离的最小值为,若,,
(1)求数列的通项公式;
(2)求证:
(3)是否存在常数,使得对,都有不等式:成立?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}和{bn}满足:,其中λ为实数,n为正整数.
(Ⅰ)若数列{an}前三项成等差数列,求的值;
(Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论;
(Ⅲ)设0<a<b,Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在数列中,为常数,,且成公比不等于1的等比数列.
(Ⅰ)求的值;
(Ⅱ)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知等差数列的前项和为,公差d0,,且成等比数列.
(1)求数列的通项公式;
(2)求数列的前项和公式.

查看答案和解析>>

同步练习册答案