精英家教网 > 高中数学 > 题目详情
10.“龟兔赛跑”是一则经典故事:兔子与乌龟在赛道上赛跑,跑了一段后,兔子领先太多就躺在道边睡着了,当他醒来后看到乌龟已经领先了,因此他用更快的速度去追,结果还是乌龟先到了终点,请根据故事选出符合的路程一时间图象(  )
A.B.C.D.

分析 先确定乌龟与兔子的函数图象,再根据乌龟先到达终点得出答案.

解答 解:由题意可知乌龟的图象为线段,兔子的图象为折线,
∵兔子醒来时乌龟尚未到达终点,排除D,
∵乌龟先到达终点,排除A,B,
故选C.

点评 本题考查了函数图象的意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=(x-1)2-alnx,a∈R.
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y-1=0垂直,求a的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.直线y=x+b平分圆x2+y2+4x-4y-8=0的周长,则b=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点P是抛物线x=$\frac{1}{4}$y2上的一个动点,则点P到点A(-1,2)的距离与点P到y轴的距离之和的最小值为(  )
A.$2\sqrt{2}$B.$2\sqrt{2}-1$C.$\sqrt{5}-1$D.$\sqrt{5}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,已知棱长为4的正方体ABCD-A'B'C'D',M是正方形BB'C'C的中心,P是△A'C'D内(包括边界)的动点,满足PM=PD,则点P的轨迹长度为$\sqrt{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知α∈($\frac{π}{4}$,$\frac{π}{2}$),a=(cosα)cosα,b=(sinα)cosα,c=(cosα)sinα,则(  )
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=ln(1+x),g(x)=a•$\frac{{{x^2}+2x}}{1+x}$(a∈R).
(1)若函数h(x)=f(x)-g(x)在定义域内单调递减,求a的取值范围;
(2)设n∈N*,证明:(1+$\frac{1}{n^2}}$)(1+$\frac{2}{n^2}}$)…(1+$\frac{n}{n^2}}$)<e${\;}^{\frac{1}{4}}}$(e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平行四边形ABCD中,已知AB=10$\sqrt{3}$,∠B=60°,AC=30,则平行四边形ABCD的面积300$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知不恒为零的函数f(x)=xlog2(ax+$\sqrt{a{x^2}+b}$)是偶函数.
(1)求a,b的值;
(2)求不等式$\frac{{\sqrt{3}}}{3}$f(x-2)<log2(2+$\sqrt{3}$)的解集.

查看答案和解析>>

同步练习册答案