精英家教网 > 高中数学 > 题目详情
5.如图,已知棱长为4的正方体ABCD-A'B'C'D',M是正方形BB'C'C的中心,P是△A'C'D内(包括边界)的动点,满足PM=PD,则点P的轨迹长度为$\sqrt{14}$.

分析 满足PM=PD的点P的轨迹是过MD的中点,且与MD垂直的平面,根据P是△A′C′D内(包括边界)的动点,可得点P的轨迹是两平面的交线ST.T在中点,S在4等分点,利用余弦定理,求出ST即可.

解答 解:满足PM=PD的点P的轨迹是过MD的中点,且与MD垂直的平面,
∵P是△A′C′D内(包括边界)的动点,
∴点P的轨迹是两平面的交线ST.T在中点,
S在4等分点时,SD=3$\sqrt{2}$,SM=$\sqrt{{4}^{2}+2}$=3$\sqrt{2}$,满足SD=SM.
∴SD=3$\sqrt{2}$,TD=2$\sqrt{2}$
∴ST2=$(3\sqrt{2})^{2}+(2\sqrt{2})^{2}$-2×$3\sqrt{2}×2\sqrt{2}$×cos60°=14.
∴ST=$\sqrt{14}$.
故答案为:$\sqrt{14}$.

点评 本题考查了空间位置关系、垂直平分线的性质、线面垂直的判定与性质定理、余弦定理,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.函数f(x)=loga(2-ax)在[0,3]上为增函数,则a的取值范围是(  )
A.(${\frac{2}{3}$,1)B.(0,1)C.(0,$\frac{2}{3}}$)D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}{f(x+2),x≤-1}\\{2x+2,-1<x<1}\\{{2}^{x}-4,x≥1}\end{array}\right.$,则f[f(-2016)]=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)=$\left\{\begin{array}{l}{2x-1(x≥2)}\\{-{x}^{2}+3x(x<2)}\end{array}\right.$,则f(-4)+f(4)的值为(  )
A.-21B.-32C.-2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,已知双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为2,以双曲线C的实轴为直径的圆记为圆O,过点F2作圆O的切线,切点为P,则以F1,F2为焦点,过点P的椭圆T的离心率为(  )
A.$\frac{{\sqrt{5}-\sqrt{3}}}{2}$B.$\sqrt{5}-\sqrt{3}$C.$\frac{{\sqrt{7}-\sqrt{3}}}{4}$D.$\sqrt{7}-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“龟兔赛跑”是一则经典故事:兔子与乌龟在赛道上赛跑,跑了一段后,兔子领先太多就躺在道边睡着了,当他醒来后看到乌龟已经领先了,因此他用更快的速度去追,结果还是乌龟先到了终点,请根据故事选出符合的路程一时间图象(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=xlnx+et-a,若对任意的t∈[0,1],f(x)在(0,e)上总有唯一的零点,则a的取值范围是(  )
A.$[e-\frac{1}{e},e)$B.[1,e+1)C.[e,e+1)D.$(e-\frac{1}{e},e+1)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列关系式中,正确的是(  )
A.∅∈{0}B.0⊆{0}C.0∈{0}D.∅={0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx+2x-6.证明:函数f(x)有且只有一个零点.

查看答案和解析>>

同步练习册答案