精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
5
2
sinAsinx+cos2x(x∈R),其中A、B、C是△ABC的三个内角,且满足cos(A+
π
4
)=-
2
10
,A∈(
π
4
π
2

(1)求函数f(x)的值域;
(2)若f(x)max=f(B),且AC=5,求△ABC的面积.
考点:三角函数中的恒等变换应用,正弦定理
专题:三角函数的图像与性质,解三角形
分析:(1)由A∈(
π
4
π
2
)化简cos(A+
π
4
)=-
2
10
可解得sinA=
4
5
,化简解析式得f(x)=
3
2
-2(sinx-
1
2
2,即可由正弦函数的性质可求f(x)的值域;
(2)由f(x)max=f(B),又由(1)可得sinB=
1
2
,又sinA=
4
5
,AC=5,由正弦定理可得BC=8,由同角三角函数关系式可得cosA=
3
5
,cosB=±
3
2
,根据两角和正弦公式可得sinC的值.由三角形面积公式S△ABC=
1
2
AC•BC•sinC即可得解.
解答: 解:(1)∵A∈(
π
4
π
2
),
∵cos(A+
π
4
)=-
2
10
2
2
(cosA-sinA)=-
2
10
⇒cosA-sinA=-
1
5
1-sin2A
=sinA-
1
5
⇒sin2A-
1
5
sinA-
12
25
=0⇒sinA=
4
5
或-
3
5
(舍去),
∴f(x)=
5
2
sinAsinx+cos2x=2sinx+cos2x=-2sin2x+2sinx+1=
3
2
-2(sinx-
1
2
2
∴当sinx=
1
2
时,f(x)max=
3
2
.当sinx=-1是,f(x)min=-3,
(2)∵f(x)max=f(B),
∴由(1)可得:sinB=
1
2
,又sinA=
4
5
,AC=5,
∴由正弦定理可得:
AC
sinB
=
BC
sinA
,即:
5
1
2
=
BC
4
5
,可得:BC=8,
∵A∈(
π
4
π
2
),可得cosA=
3
5
,cosB=±
3
2

∴sinC=sin(A+B)=sinAcosB+cosAsinB=
4
5
×(±
3
2
)+
3
5
×
1
2
=
4
3
+3
10
3-4
3
10
(舍去),
∴S△ABC=
1
2
AC•BC•sinC=
1
2
×5×8×
4
3
+3
10
=8
3
+6.
点评:本题主要考查了正弦定理,同角三角函数关系式,两角和正弦公式,三角形面积公式,正弦函数的图象和性质,熟练应用相关公式是解题的关键,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=logax+x-b(2<a<3<b<4)的零点所在的一个区间是(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
9
-
y2
4
=1,A、B为过左焦点F1的直线与双曲线左支的两个交点,|AB|=9,F2为右焦点,则△AF2B的周长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i为虚数单位,若数列{an}满足:a1=i,且(1-i)an+1=(1+i)an,则复数a5=(  )
A、-iB、-1C、iD、1

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中的假命题是(  )
A、?x∈R,lgx=0
B、?x∈R,tanx=2
C、?x∈R,x2≥0
D、?x∈R,2 x2+2x>1

查看答案和解析>>

科目:高中数学 来源: 题型:

求定积分:
(1)
2
1
x2-2x-3
x
dx;
(2)
4
1
x
(1-
x
)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=|ln|3x-1||在定义域的某个子区间(k-1,k+1)上不具有单调性,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={a,b,c,d},集合B={e,f},其中a,b,c,d,e,f均为实数.
(1)从集合A到集合B能构成多少个不同的映射?
(2)能构成多少个以集合A为定义域,集合B为值域的不同函数?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足
y≤x+2
x+y≤1
y≥ex-e
,则x-y+1的取值范围是(  )
A、[-2,2]
B、[-1,2]
C、[-2,e]
D、[-1,e]

查看答案和解析>>

同步练习册答案