精英家教网 > 高中数学 > 题目详情
已知集合A={a,b,c,d},集合B={e,f},其中a,b,c,d,e,f均为实数.
(1)从集合A到集合B能构成多少个不同的映射?
(2)能构成多少个以集合A为定义域,集合B为值域的不同函数?
考点:映射
专题:计算题,函数的性质及应用
分析:(1)要得到一个从集合A到集合B的映射,需要给A中的四个元素都在B中找到对应元素,分4步完成,每一步中都有2种找法,则从集合A到集合B能构成的映射个数为24
(2)把(1)中的映射去掉像集为单元素集的即可得到以A为定义域,B为值域的不同的函数个数.
解答: 解:(1)要“完成一个映射”可以分步完成:第一步a的像有2种可能,同理b,c,d的像也有2种可能,
∴A到B的映射共有2×2×2×2=24共16个;
(2)从A到B建立映射共有24=16个,其中有两个映射的像集为{1}和{-1},把这2个映射去掉,
∴构成以A为定义域,B为值域的不同的函数共有14个.
点评:本题考查了映射与函数的概念,关键是对概念的理解,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等差数列{an}中,a1=1,a2=3,数列{
1
anan+1
}的前n项和为
15
31
,则n的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
5
2
sinAsinx+cos2x(x∈R),其中A、B、C是△ABC的三个内角,且满足cos(A+
π
4
)=-
2
10
,A∈(
π
4
π
2

(1)求函数f(x)的值域;
(2)若f(x)max=f(B),且AC=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

若P是长度为6的线段AB上任意一点,则点P到线段AB两端距离均不小于1的概率(  )
A、
5
6
B、
2
3
C、
1
2
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,其中是假命题的为(  )
①若m,n是异面直线,且m⊥α,n⊥β,则α与β不会平行;
②函数f(x)=|cos2x-1|的最小正周期是π;
③命题“?a∈R,函数f(x)=(x-1)a+1恒过定点(1,1)”为真;
④“命题p∨q为真”是“命题p∧q为真”的必要不充分条件.
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,四边形A1ACC1是边长为2的正方形,AB=BC=
2

(1)求证:BC⊥AB1
(2)求三棱锥 B1-ABC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

据专家估算,我国每年在餐桌上浪费的食物约2000亿元,相当于2亿多人一年的口粮.你是否为“光盘族”?围绕此主题,在某城市广场随机调查了50位中年人和老年人,根据他们对此问题的回答得到下面的2×2列联表:
老年人中年人合计
非“光盘族”23032
“光盘族”81018
合计104050
(1)由以上统计的2×2列联表分析能否有99.5%的把握认为“是光盘族与年龄层次有关”,说明你的理由;
下面的临界值表供参考:
k02.0722.7063.8415.0246.6357.87910.828
P( K2≥k00.150.100.050.0250.0100.0050.001
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,n=a+b+c+d.
(2)若参加此次调查的50人中,甲、乙等6人恰为粮食局的工作人员,现在要从这6人中,随机选出2人统计调查结果,求甲、乙两人至少有1人入选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在平面四边形ABCD中,AB=4,AD=2,∠DAB=60°,∠BCD=120°.
(1)当BC=CD时,求△BCD的面积;
(2)设∠CDB=θ,记四边形ABCD的周长为f(θ),求f(θ)的方程,并求出它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的(  )
A、必要不充分条件
B、充分不必要条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案