精英家教网 > 高中数学 > 题目详情
10.设a=${∫}_{1}^{e}$$\frac{2}{x}$dx,则二项式${({a\sqrt{x}-\frac{1}{{\sqrt{x}}}})^6}$的展开式的常数项是-160.

分析 求定积分求得a的值,然后写出二项展开式的通项,由x的指数为0求得r值,代入通项求得常数项.

解答 解:设a=${∫}_{1}^{e}$$\frac{2}{x}$dx=2lnx|${\;}_{1}^{e}$=2lne=2,
∴(2$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6的通项公式为26-r(-1)rC6rx3-r
令3-r=0,即r=3,
∴(2$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6的展开式的常数项是23(-1)3C63=-160,
故答案为:-160

点评 本题考查了定积分,考查了二项式定理,关键是熟练掌握二项展开式的通项,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1,2,3,4),现从袋中任取一球,X表示所取球的标号,
(1)求X的分布列,均值和方差;
(2)若Y=aX+b,E(Y)=1,D(Y)=11,试求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,a,b,c分别是角A,B,C的对边,且(a+b+c)(a+b-c)=3ab.
(Ⅰ)求角C的值;
(Ⅱ)若c=2,且△ABC为锐角三角形,求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设θ为锐角,若cos(θ-$\frac{3π}{4}$)=$\frac{3}{5}$,则sin(θ+$\frac{π}{4}$)=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设集合B={x|x<-1或x>16}.
(1)求∁RB;
(2)设集合C={x|-2≤x<3},求(∁RB)∪C;
(3)设集合A={x|2a+1≤x≤3a-5},若A∩B=∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.红星超市为了了解顾客一次购买某牛奶制品的数量(单位:盒)及结算的时间(单位:分钟)等信息,随机收集了在该超市购买牛奶制品的50位顾客的相关数据,如表所示:
一次购物数量1至2盒3至5盒6至9盒10至17盒18至25盒
顾客数量(人)20141024
结算的时间(分钟/人)11.521.52
(Ⅰ)请估计这50位顾客购买牛奶制品的结算时间的平均值;并求一位顾客的结算时间小于结算时间平均值的概率;
(Ⅱ)从购买牛奶制品的数量不少于10盒的顾客中任选两人,求两位顾客的结算时间之和超过3.5分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集U={x|y=log2(x-1)},集合A={x||x-2|<1},则∁UA=(  )
A.(3,+∞)B.[3,+∞)C.(1,3)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)是定义在R上的奇函数,且f(x+2)=f(x-2);当0≤x≤1时,f(x)=$\sqrt{x}$,则f(1)+f(2)+f(3)+…+f(2017)等于(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(2x2-4ax)lnx+x2
(1)设a>0,求函数f(x)的单调区间.
(2)不等式(2x-4a)lnx>-x对?x∈[1,+∞)恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案