精英家教网 > 高中数学 > 题目详情
20.袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1,2,3,4),现从袋中任取一球,X表示所取球的标号,
(1)求X的分布列,均值和方差;
(2)若Y=aX+b,E(Y)=1,D(Y)=11,试求a,b的值.

分析 (1)由题设知X的可能取值,计算对应的概率值,写出随机变量X的分布列,
计算数学期望E(X)和方差D(X);
(2)根据方差与均值的计算公式,列出方程组求得a、b的值.

解答 解:(1)由题设知X=0,1,2,3,4,
计算P(X=0)=$\frac{10}{20}$=$\frac{1}{2}$,
P(X=1)=$\frac{1}{20}$,
P(X=2)=$\frac{2}{20}$=$\frac{1}{10}$,
P(X=3)=$\frac{3}{20}$,
P(X=4)=$\frac{4}{20}$=$\frac{1}{5}$,
∴X的分布列为:

ξ01234
P$\frac{1}{2}$$\frac{1}{20}$$\frac{1}{10}$$\frac{3}{20}$$\frac{1}{5}$
E(X)=0×$\frac{1}{2}$+1×$\frac{1}{20}$+2×$\frac{1}{10}$+3×$\frac{3}{20}$+4×$\frac{1}{5}$=1.5;
D(X)=(0-1.5)2×$\frac{1}{2}$+(1-1.5)2×$\frac{1}{20}$+(2-1.5)2×$\frac{1}{10}$+(3-1.5)2×$\frac{3}{20}$+(4-1.5)2×$\frac{1}{5}$=2.75;
(2)由D(Y)=a2D(X),得a2×2.75=11,即a=±2,
又E(Y)=aE(X)+b,
∴当a=2时,由1=2×1.5+b,解得b=-2;
当a=-2时,由1=-2×1.5+b,解得b=4;
∴$\left\{\begin{array}{l}{a=2}\\{b=-2}\end{array}\right.$或$\left\{\begin{array}{l}{a=-2}\\{b=4}\end{array}\right.$为所求.

点评 本题考查了离散型随机变量的分布列、数学期望和方差的应用问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.在一次招聘中,主考官要求应聘者从6道备选题中一次性随机抽取3道题,并独立完成所抽取的3道题.甲能正确完成其中的4道题,乙能正确完成每道题的概率为$\frac{2}{3}$,且每道题完成与否互不影响.
(1)记所抽取的3道题中,甲答对的题数为X,则X的分布列为
X123
P0.20.60.2

(2)记乙能答对的题数为Y,则Y的期望为E(Y)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(Ⅰ)已知函数f(x)=|2x-3|-2|x|,若关于x不等式f(x)≤|a+2|+2a恒成立,求实数a的取值范围;
(Ⅱ)已知正数x,y,z,满足2x+y+z=1,求$\frac{1}{x+2y+z}$+$\frac{3}{z+3x}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知α∈($\frac{π}{2}$,π),且sin$\frac{α}{2}$+cos$\frac{α}{2}$=$\frac{\sqrt{6}}{2}$,求cosα的值;
(2)已知sin(θ+$\frac{π}{4}$)=$\frac{3}{5}$,求cos($\frac{π}{4}$-θ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.数列{an}的前n项和记为Sn,a1=l,an+1=2Sn+1 (n≥1)
(I)求{ an }的通项公式;
(Ⅱ)等差数列{bn}的各项为正,其前n项和为Tn,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求数列{$\frac{1}{{T}_{n}}$}的前n项和An

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,BC=5,AC=8,C=60°,则$\overrightarrow{BC}•\overrightarrow{CA}$=(  )
A.20B.-20C.$20\sqrt{3}$D.$-20\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.运行如图所示的程序框图,则输出结果为(  )
A.2017B.2016C.1009D.1008

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)=$\left\{\begin{array}{l}{{x}^{3},0≤x≤1}\\{x,x>1}\end{array}\right.$,则定积分${∫}_{0}^{2}$f(x)dx=$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设a=${∫}_{1}^{e}$$\frac{2}{x}$dx,则二项式${({a\sqrt{x}-\frac{1}{{\sqrt{x}}}})^6}$的展开式的常数项是-160.

查看答案和解析>>

同步练习册答案