分析 (1)采用两边平方,利用同角三角函数基本关系式,可得答案,注意α∈($\frac{π}{2}$,π);
(2)利用诱导公式即可求解.
解答 解:(1)由sin$\frac{α}{2}$+cos$\frac{α}{2}$=$\frac{\sqrt{6}}{2}$,
可得:(sin$\frac{α}{2}$+cos$\frac{α}{2}$)2=1+sinα=$\frac{3}{2}$,
∴sinα=$\frac{1}{2}$,
α∈($\frac{π}{2}$,π),
∴cosα=$\frac{\sqrt{3}}{2}$.
(2)由sin(θ+$\frac{π}{4}$)=cos[$\frac{π}{2}$-($\frac{π}{4}+θ$)]=$\frac{3}{5}$,
∴cos($\frac{π}{4}$-θ)=$\frac{3}{5}$.
点评 本题考查了诱导公式及同角三角函数基本关系式,考查了计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 130 | B. | 65 | C. | 70 | D. | 140 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 3 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{5}{6}$ | C. | -$\frac{3}{4}$ | D. | $\frac{6}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com