精英家教网 > 高中数学 > 题目详情
18.设i为虚数单位,复数z1=1-i,z2=2i-1,则复数z1•z2在复平面上对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、几何意义即可得出.

解答 解:复数z1•z2=(1-i)(2i-1)=1+3i在复平面上对应的点(1,3)在第一象限.
故选:A.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.过圆x2+y2=25内一点P($\sqrt{15}$,0)作倾斜角互补的直线AC和BD,分别与圆交于A、C和B、D,则四边形ABCD面积的最大值为(  )
A.40$\sqrt{3}$B.$\frac{80\sqrt{3}}{3}$C.40$\sqrt{2}$D.$\frac{80\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.用数学归纳法证明n2<2n(n为自然数且n≥5)时,第一步应(  )
A.证明n=0时,n2<2nB.证明n=5时,n2<2nC.证明n=1时,n2<2nD.证明n=6时,n2<2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.{an}数列的前n项和Sn符合Sn=k(2n-1)且a3=8,
(1)求{an}通项公式;
(2)求{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知长方形ABCD中,AB=2$\sqrt{2}$,AD=$\sqrt{2}$,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求证:AD⊥BM;
(2)求直线DB与平面ABCM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得$\sum_{i=1}^{10}$xi=80,$\sum_{i=1}^{10}$yi=20,$\sum_{i=1}^{10}$xiyi=184,$\sum_{i=1}^{10}$x${\;}_{i}^{2}$=720.附:线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值.
(1)求家庭的月储蓄y对月收入x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)判断变量x与y之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在一次招聘中,主考官要求应聘者从6道备选题中一次性随机抽取3道题,并独立完成所抽取的3道题.甲能正确完成其中的4道题,乙能正确完成每道题的概率为$\frac{2}{3}$,且每道题完成与否互不影响.
(1)记所抽取的3道题中,甲答对的题数为X,则X的分布列为
X123
P0.20.60.2

(2)记乙能答对的题数为Y,则Y的期望为E(Y)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.不等式x2-2ax-8a2<0的解集为(x1,x2),且x2-x1=15,则a=$\frac{5}{2}$或$-\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知α∈($\frac{π}{2}$,π),且sin$\frac{α}{2}$+cos$\frac{α}{2}$=$\frac{\sqrt{6}}{2}$,求cosα的值;
(2)已知sin(θ+$\frac{π}{4}$)=$\frac{3}{5}$,求cos($\frac{π}{4}$-θ).

查看答案和解析>>

同步练习册答案