精英家教网 > 高中数学 > 题目详情
13.如图,已知长方形ABCD中,AB=2$\sqrt{2}$,AD=$\sqrt{2}$,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求证:AD⊥BM;
(2)求直线DB与平面ABCM所成角的正弦值.

分析 (1)在长方形ABCD中,可得AM=BM=2,BM⊥AM,
即BM⊥平面ADM,AD⊥BM;           
(2)取AM得中点N,连接DH,BH,MB
则DH⊥AM,又平面ADM⊥平面ABCM,∴DH⊥面ABCM,DH⊥HB
故∠DBH即为直线DB与平面ABCM所成角
在Rt△DHB中,求解直线DB与平面ABCM所成角的正弦值

解答 (1)证明:∵长方形ABCD中,AB=$2\sqrt{2}$,AD=$\sqrt{2}$,M为DC的中点,
∴AM=BM=2,∴BM⊥AM.∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM?平面ABCM
∴BM⊥平面ADM;∵AD?平面ADM∴AD⊥BM;                 …(6分)
(2)取AM得中点N,连接DH,BH,MB
则DH⊥AM,又平面ADM⊥平面ABCM,∴DH⊥面ABCM,DH⊥HB
故∠DBH即为直线DB与平面ABCM所成角

在Rt△DAM中,DH=$\frac{1}{2}AM=1$,
由(1)得BM⊥平面ADM,BM⊥DM
∴$DB=\sqrt{B{M}^{2}+D{M}^{2}}=\sqrt{6}$
在Rt△DHB中,sin$∠DBH=\frac{DH}{DB}=\frac{1}{\sqrt{6}}=\frac{\sqrt{6}}{6}$
∴直线DB与平面ABCM所成角的正弦值为$\frac{\sqrt{6}}{6}$

点评 本题考查了空间线线垂直的判定,线面角的求解,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.4名运动员参加4×100接力赛,根据平时队员训练的成绩,甲不能跑第一棒,乙不能跑第四棒,则不同的出场顺序有(  )
A.12种B.14种C.16种D.24种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知M是关于x的不等式2x2+(3a-7)x+3+a-2a2<0解集,且M中的一个元素是0,求实数a的取值范围,并用a表示出该不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.不等式(x2-2x-3)(x-6)2≤0的解集为{x|-1≤x≤3或x=6}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在等差数列{an}中,a3+a8=-3,那么S10等于(  )
A.-9B.-11C.-13D.-15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设i为虚数单位,复数z1=1-i,z2=2i-1,则复数z1•z2在复平面上对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若实数x,y,m,n满足x2+y2=a,m2+n2=b,则mx+ny的最大值为(  )
A.$\frac{a+b}{2}$B.$\sqrt{ab}$C.$\sqrt{\frac{{{a^2}+{b^2}}}{2}}$D.$\frac{ab}{a+b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数f(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,g(x)=x2f(x-1),则函数g(x)的单调递减区间为[0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆$\frac{x^2}{25}+\frac{y^2}{b^2}=1(b>0)$(0<b<5)的离心率$\frac{4}{5}$,则b的值等于(  )
A.1B.3C.6D.8

查看答案和解析>>

同步练习册答案