分析 根据原不等式即(2x-a-1)(x+2a-3)<0,有一个元素是x=0,带入不等式,求出a的范围.对a讨论,表示出该不等式的解集.
解答 解:不等式2x2+(3a-7)x+3+a-2a2<0,因式分解,可得(2x-a-1)(x+2a-3)<0,
由方程(2x-a-1)(x+2a-3)=0,可得两个根分别为:x1=$\frac{a+1}{2}$,x2=3-2a.
由x=0适合不等式,
故得(a+1)(2a-3)>0,
∴a<-1,或a>$\frac{3}{2}$.
若a<-1,x1<x2,此时不等式的解集为{x|$\frac{a+1}{2}$<x<3-2a}.
若a>$\frac{3}{2}$,x1>x2,此时不等式的解集为{x|$\frac{a+1}{2}$>x>3-2a}.
(提示:利用作差比较x1,x2的大小)
点评 本题主要考查了一元二次不等式的应用,以及根与系数的关系,同时考查了分析求解的能力和计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-2<x<2} | B. | {x|x>2,或x<-2} | C. | {x|0<x<4} | D. | {x|x>4,或x<0} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${(-\frac{1}{2})^n}$ | B. | $-\frac{1}{2^n}$ | C. | $-{(-\frac{1}{2})^n}$ | D. | $-{(\frac{1}{2})^{n-1}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 证明n=0时,n2<2n | B. | 证明n=5时,n2<2n | C. | 证明n=1时,n2<2n | D. | 证明n=6时,n2<2n |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $\frac{1}{4}$ | C. | -4 | D. | $-\frac{1}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com