精英家教网 > 高中数学 > 题目详情
5.若实数x,y,m,n满足x2+y2=a,m2+n2=b,则mx+ny的最大值为(  )
A.$\frac{a+b}{2}$B.$\sqrt{ab}$C.$\sqrt{\frac{{{a^2}+{b^2}}}{2}}$D.$\frac{ab}{a+b}$

分析 利用三角换元,将其代入mx+ny中,由三角函数公式分析可得答案.

解答 解:由x2+y2=a,a≥0.
∴令$\sqrt{a}$sinα=x,$\sqrt{a}$cosα=y,(0≤α<2π)满足题意.
由m2+n2=b,b≥0.
∴令$\sqrt{b}$sinβ=m,$\sqrt{b}$cosβ=n,(0≤β<2π)满足题意.
则mx+ny=$\sqrt{ab}$sinαsinβ+$\sqrt{ab}$cosαcosβ=$\sqrt{ab}$cos(α-β).
∵cos(α-β)的最大值为1.
∴mx+ny的最大值为$\sqrt{ab}$
故选:B.

点评 本题主要考查求最值问题,考查三角换元,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.函数f(x)=(x-2)(ax+b)为偶函数,且在(0,+∞)单调递增,则f(2-x)>0的解集为(  )
A.{x|-2<x<2}B.{x|x>2,或x<-2}C.{x|0<x<4}D.{x|x>4,或x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知模为2的向量$\overrightarrow a$与单位向量$\overrightarrow b$的夹角为$\frac{2π}{3}$,则$(2\overrightarrow a-\overrightarrow b)•(\overrightarrow a+\overrightarrow b)$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知长方形ABCD中,AB=2$\sqrt{2}$,AD=$\sqrt{2}$,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求证:AD⊥BM;
(2)求直线DB与平面ABCM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个三棱锥的三视图如图所示,则该几何体的体积为(  )
A.1B.$\frac{4\sqrt{3}}{3}$C.$\frac{8\sqrt{3}}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在一次招聘中,主考官要求应聘者从6道备选题中一次性随机抽取3道题,并独立完成所抽取的3道题.甲能正确完成其中的4道题,乙能正确完成每道题的概率为$\frac{2}{3}$,且每道题完成与否互不影响.
(1)记所抽取的3道题中,甲答对的题数为X,则X的分布列为
X123
P0.20.60.2

(2)记乙能答对的题数为Y,则Y的期望为E(Y)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{2^x},x≥0\\{log_2}(-x),x<0\end{array}$,则f(f(-2))=(  )
A.-1B.2C.1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数$f(x)=\frac{1}{x}$,则f'(2)等于(  )
A.4B.$\frac{1}{4}$C.-4D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.数列{an}的前n项和记为Sn,a1=l,an+1=2Sn+1 (n≥1)
(I)求{ an }的通项公式;
(Ⅱ)等差数列{bn}的各项为正,其前n项和为Tn,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求数列{$\frac{1}{{T}_{n}}$}的前n项和An

查看答案和解析>>

同步练习册答案