(本题满分14分)如图,在四棱锥
中,底面
是矩形.已知![]()
.
![]()
(Ⅰ)证明
平面
;
(Ⅱ)求异面直线
与
所成的角的大小;
(Ⅲ)求二面角
的大小.
解:(Ⅰ)证明
(Ⅱ)
.
(Ⅲ)
.
【解析】解:(Ⅰ)证明:在
中,由题设
可得
于是
.在矩形
中,
.又
,
所以
平面
.
![]()
(Ⅱ)由题设,
,所以
(或其补角)是异面直线
与
所成的角.
在
中,由余弦定理得[来源:学,科,网Z,X,X,K]
[来源:学_科_网Z_X_X_K]
![]()
由(Ⅰ)知
平面
,
平面
,[来源:]
所以
,因而
,于是
是直角三角形,故
.
所以异面直线
与
所成的角的大小为
.
(Ⅲ)过点P做
于H,过点H做
于E,连结PE
因为
平面
,
平面
,所以
.又
,[来源:ZXXK]
因而
平面
,故HE为PE再平面ABCD内的射影.由三垂线定理可知,
,从而
是二面角
的平面角。
由题设可得,
![]()
于是再
中,![]()
所以二面角
的大小为
.
科目:高中数学 来源: 题型:
(本题满分14分)如图2,为了绿化城市,拟在矩形区域ABCD内建一个矩形草坪,另外△AEF内部有一文物保护区域不能占用,经过测量AB=100m,BC=80m,AE=30m,AF=20m,应该如何设计才能使草坪面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)
如图,已知直三棱柱ABC—A1B1C1,
,E是棱CC1上动点,F是AB中点,![]()
(1)求证:
;
(2)当E是棱CC1中点时,求证:CF//平面AEB1;
(3)在棱CC1上是否存在点E,使得二面角A—EB1—B的大小是45°,若存在,求CE的长,若不存在,请说明理由。
![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省济宁市高三第二次月考文科数学 题型:解答题
(本题满分14分)如图,在四棱锥E-ABCD中,底面ABCD为正方形, AE⊥平面CDE,已知AE=3,DE=4.
![]()
(Ⅰ)若F为DE的中点,求证:BE//平面ACF;
(Ⅱ)求直线BE与平面ABCD所成角的正弦值
查看答案和解析>>
科目:高中数学 来源:2011年福建省高二上学期期末考试数学理卷 题型:解答题
(本题满分14分)如图,正方形
、
的边长都是1,平面![]()
平面
,点
在
上移动,点
在
上移动,若
(
)
![]()
(I)求
的长;
(II)
为何值时,
的长最小;
(III)当
的长最小时,求面
与面
所成锐二面角余弦值的大小.
查看答案和解析>>
科目:高中数学 来源:杭州市2010年第二次高考科目教学质量检测 题型:解答题
(本题满分14分)如图,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,
,又E、F分别是C1A和C1B的中点。
(1)求证:EF//平面ABC;
(2)求证:平面
平面C1CBB1;
(3)求异面直线AB与EB1所成的角。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com