精英家教网 > 高中数学 > 题目详情
13.设M={a|a=x2-y2,x,y∈Z},则对任意的整数n,形如4n,4n+1,4n+2,4n+3的数中,不是集合M中的元素是(  )
A.4nB.4n+1C.4n+2D.4n+3

分析 根据平方差公式凑数判断.

解答 解:∵4n=(n+1)2-(n-1)2,∴4n∈M,
∵4n+1=(2n+1)2-(2n)2,∴4n+1∈M,
∵4n+3=(2n+2)2-(2n+1)2,∴4n+3∈M,
若4n+2∈M,则存在x,y∈Z使得x2-y2=4n+2,
∴4n+2=(x+y)(x-y),
∵x+y和x-y的奇偶性相同,
若x+y和x-y都是奇数,则(x+y)(x-y)为奇数,而4n+2是偶数;
若x+y和x-y都是偶数,则(x+y)(x-y)能被4整除,而4n+2不能被4整除,
∴4n+2∉M.
故选C.

点评 本题考查了元素与集合的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设直线y=kx+1与圆x2+y2+2x-my=0相交于A,B两点,若点A,B关于直线l:x+y=0对称,则|AB|=$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.运行如下程序框图,如果输入的t∈[0,5],则输出S属于(  )
A.[-4,10)B.[-5,2]C.[-4,3]D.[-2,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,由半圆x2+y2=r2(y≤0,r>0)和部分抛物线y=a(x2-1)(y≥0,a>0)合成的曲线C称为“羽毛球形线”,曲线C与x轴有A、B两个焦点,且经过点(2.3).
(1)求a、r的值;
(2)设N(0,2),M为曲线C上的动点,求|MN|的最小值;
(3)过A且斜率为k的直线l与“羽毛球形线”相交于P,A,Q三点,问是否存在实数k,使得∠QBA=∠PBA?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知双曲线M:$\frac{y^2}{a^2}-\frac{x^2}{b^2}$=1(a>0,b>0)的上焦点为F,上顶点为A,B为虚轴的端点,离心率e=$\frac{{2\sqrt{3}}}{3}$,且S△ABF=1-$\frac{{\sqrt{3}}}{2}$.抛物线N的顶点在坐标原点,焦点为F.
(1)求双曲线M和抛物线N的方程;
(2)设动直线l与抛物线N相切于点P,与抛物线的准线相交于点Q,则以PQ为直径的圆是否恒过y轴上的一个定点?如果经过,试求出该点的坐标,如果不经过,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义运算:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3,将函数f(x)=$|\begin{array}{l}{\sqrt{3}}&{sinωx}\\{1}&{cosωx}\end{array}|$(ω>0)的图象向左平移$\frac{2π}{3}$个单位,所得图象对应的函数为奇函数,则ω的最小值是(  )
A.$\frac{1}{2}$B.$\frac{5}{4}$C.2D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图所示某物体的三视图,则求该物体的体积为(  )
A.$8-\frac{5π}{12}$B.$8-\frac{π}{3}$C.$8-\frac{π}{2}$D.$8-\frac{7π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x+1)=x2-2x
(1)求函数f(x)的解析式;
(2)若函数f(x)在x∈[0,5]时.关于x的方程f(x)=k总有实数解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在平面直角坐标系xOy中,若双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{m}$=1(m>0)的离心率为$\frac{\sqrt{6}}{2}$,则该双曲线的两条渐近线方程是y=±$\sqrt{2}$x.

查看答案和解析>>

同步练习册答案