精英家教网 > 高中数学 > 题目详情
19.已知F1、F2是双曲线M:$\frac{y^2}{4}$-$\frac{x^2}{m^2}$=1的焦点,y=$\frac{{2\sqrt{5}}}{5}$x是双曲线M的一条渐近线,离心率等于$\frac{3}{4}$的椭圆E与双曲线M有相同的焦点:
(1)求m的值与椭圆E的标准方程;
(2)若过点(1,0)且倾斜角为60°的直线与椭圆E交于A、B两点,求AB的长度.

分析 (1)利用F1、F2是双曲线M:$\frac{y^2}{4}$-$\frac{x^2}{m^2}$=1的焦点,y=$\frac{{2\sqrt{5}}}{5}$x是双曲线M的一条渐近线,离心率等于$\frac{3}{4}$的椭圆E与双曲线M的焦点相同,由渐近线方程求得m的值,椭圆的c,由离心率求得a,进而得到b,可得椭圆方程;
(2)求出直线方程,代入椭圆方程,消去y,可得x的二次方程,运用韦达定理和弦长公式,即可得到所求.

解答 解:(1)双曲线M:$\frac{y^2}{4}$-$\frac{x^2}{m^2}$=1的渐近线方程为y=±$\frac{2}{m}$x,
由题意,$\frac{2}{|m|}$=$\frac{2\sqrt{5}}{5}$,∴m=±$\sqrt{5}$,
∴双曲线M:$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{5}$=1,
∴F1(0,-3),F2(0,3),
∵离心率等于$\frac{3}{4}$的椭圆E与双曲线M的焦点相同,
∴c=3,a=4,b=$\sqrt{7}$,
则椭圆E的标准方程为$\frac{{y}^{2}}{16}$+$\frac{{x}^{2}}{7}$=1;
(2)过点(1,0)且倾斜角为60°的直线方程为y-0=$\sqrt{3}$(x-1),
即y=$\sqrt{3}$x-$\sqrt{3}$,
代入椭圆方程$\frac{{y}^{2}}{16}$+$\frac{{x}^{2}}{7}$=1,
消去y,可得37x2-42x-91=0,
设A(x1,y1),B(x2,y2),
可得x1+x2=$\frac{42}{37}$,x1x2=-$\frac{91}{37}$,
则|AB|=$\sqrt{1+3}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$
=2$\sqrt{(\frac{42}{37})^{2}+\frac{4×91}{37}}$=$\frac{16}{37}$$\sqrt{238}$.

点评 本题考查椭圆、双曲线的方程和性质,考查渐近线方程和离心率公式的运用,考查直线与椭圆方程联立,运用韦达定理和弦长公式,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知样本3,4,x,7,5的平均数是5,则此样本的方差为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知($\sqrt{x}$-$\root{3}{x}$)n的二项展开式中所有奇数项的系数之和为512,求展开式的所有有理项(指数为整数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点P(cosx,sinx)在直线y=3x上,则sinxcosx的值是(  )
A.$\frac{1}{6}$B.$\frac{1}{5}$C.$\frac{3}{10}$D.$\frac{2}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在某次试验中,有两个试验数据x,y,统计的结果如下面的表格.
x12345
y23445
(I) 在给出的坐标系中画出x,y的散点图;
(II)然后根据表格的内容和公式求出y对x的回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,并估计当x为10时y的值是多少?
$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.求函数y=$\frac{{{x^4}+2{x^2}+5}}{{{x^2}+1}}$的最小值5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,则$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知双曲线的中心在原点,两个焦点分别为F1($\sqrt{5}$,0)、F2(-$\sqrt{5}$,0),则P在双曲线上且PF1⊥PF2,且△PF1F2的面积为1,则双曲线的方程为$\frac{{x}^{2}}{4}$-y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若偶函数f(x)在[0,+∞)上是增函数,a=f(ln$\frac{1}{π}$),b=f(logπ$\frac{1}{e}$),c=f(ln$\frac{1}{{π}^{2}}$),(e为自然对数的底),则a,b,c的大小关系为(  )
A.c<b<aB.b<a<cC.c<a<bD.a<b<c

查看答案和解析>>

同步练习册答案