精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;
(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(-∞,-1]上的最大值.

分析 (1)根据曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,可知切点处的函数值相等,切点处的斜率相等,故可求a、b的值;
(2)根据a2=4b,构建函数$h(x)=f(x)+g(x)={x^3}+a{x^2}+\frac{1}{4}{a^2}x+1$,求导函数,利用导数的正负,可确定函数的单调区间,进而分类讨论,确定函数在区间(-∞,-1)上的最大值.

解答 解:(1)由(1,c)公共切点可得:f(x)=ax2+1(a>0),
则f'(x)=2ax,k1=2a,g(x)=x3+bx,
则g'(x)=3x2+b,k2=3+b,∴2a=3+b①
又f(1)=a+1,g(1)=1+b,∴a+1=1+b,即a=b,代入①式可得:$\left\{\begin{array}{l}a=3\\ b=3\end{array}\right.$.
(2)∵a2=4b,∴设$h(x)=f(x)+g(x)={x^3}+a{x^2}+\frac{1}{4}{a^2}x+1$
则$h'(x)=3{x^2}+2ax+\frac{1}{4}{a^2}$,
令h'(x)=0,解得:${x_1}=-\frac{a}{2}$,${x_2}=-\frac{a}{6}$;
∵a>0,∴$-\frac{a}{2}<-\frac{a}{6}$,
∴原函数在$({-∞\;,\;\;-\frac{a}{2}})$单调递增,在$({-\frac{a}{2}\;,\;\;-\frac{a}{6}})$单调递减,在$({-\frac{a}{6}\;,\;\;+∞})$上单调递增
①若$-1≤-\frac{a}{2}$,即a≤2时,最大值为$h(1)=a-\frac{a^2}{4}$;
②若$-\frac{a}{2}<-1<-\frac{a}{6}$,即2<a<6时,最大值为$h({-\frac{a}{2}})=1$
③若$-1≥-\frac{a}{6}$时,即a≥6时,最大值为$h({-\frac{a}{2}})=1$.
综上所述:当a∈(0,2]时,最大值为$h(1)=a-\frac{a^2}{4}$;当a∈(2,+∞)时,最大值为$h({-\frac{a}{2}})=1$.

点评 本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性与最值,解题的关键是正确求出导函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.二项式${(x-\frac{1}{{\root{3}{x}}})^8}$的展开式中,常数项是28.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}满足a1+a2=6,a2+a3=10.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an+an+1}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.等差数列{an}和等比数列{bn}中,Sn为数列{an}的前n项和,Tn为数列{bn}的前n项和,若a1=2,S3=12,T2=3,T4=15
(1)求a6
(2)求T6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{{e}^{x}}{x}$-alnx-$\frac{a}{x}$(a∈R).
(1)当a=1时,求f(x)在(1,f(1))处的切线方程;
(2)当x>1时,f(x)>e-a,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设点$A(-2,\sqrt{3})$,B(2,0),点M在椭圆$\frac{x^2}{16}+\frac{y^2}{12}=1$上运动,当|MA|+|MB|最大时,点M的坐标为8+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$=(m,3),$\overrightarrow{b}$=(1,2),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{b}$的值为7.5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}满足an-an+1=an+1an(n∈N*),数列{bn}满足${b_n}=\frac{1}{a_n}$,且b1+b2+…+b10=65,则an=$\frac{1}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.将一个底面圆的直径为2、高为1的圆柱截成一个长方体,如图所示,设这个长方体底面的一条边长为x、对角线长为2,底面的面积为A.
(1)求面积A以x为自变量的函数式;
(2)求截得长方体的体积的最大值.

查看答案和解析>>

同步练习册答案