精英家教网 > 高中数学 > 题目详情

已知函数
(1)解不等式
(2)对于任意的,不等式恒成立,求的取值范围.

(1);(2).

解析试题分析:本题考查绝对值不等式的解法和不等式的恒成立问题,考查学生的分类讨论思想和转化能力.第一问,利用零点分段法进行分类求解;第二问,利用函数的单调性求出最大值证明恒成立问题.
试题解析:(1)    3分
解得 ∴不等式解集为          6分
(2),即,        7分
,则      9分
上单调递减, ;上单调递增,
∴在,                    11分
时不等式上恒成立           12分
考点:1.绝对值不等式的解法;2.分段函数求最值;3.恒成立问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

求值化简:
(Ⅰ)
(Ⅱ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像在点处的切线方程为.
(Ⅰ)求实数的值;
(Ⅱ)求函数在区间上的最大值;
(Ⅲ)若曲线上存在两点使得是以坐标原点为直角顶点的直角三角形,且斜边的中点在轴上,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数上是减函数,求实数a的最小值;
(2)若,使成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)求函数的单调区间;
(2)当时,是否存在整数,使不等式恒成立?若存在,求整数的值;若不存在,请说明理由;
(3)关于的方程上恰有两个相异实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值(精确到1辆/小时).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数.若的定义域为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是二次函数,不等式的解集是,且在区间上的最大值为12.
(1)求的解析式;
(2)设函数上的最小值为,求的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求出所有的函数使得对于所有都能被整除.

查看答案和解析>>

同步练习册答案