精英家教网 > 高中数学 > 题目详情

设函数.
(1)求函数的单调区间;
(2)当时,是否存在整数,使不等式恒成立?若存在,求整数的值;若不存在,请说明理由;
(3)关于的方程上恰有两个相异实根,求实数的取值范围.

(1)函数的递增区间是;减区间是
(2)存在整数,且当时,不等式在区间上恒成立;
(3)实数的取值范围是.

解析试题分析:(1)先求出函数的定义域,然后求出导数,利用导数求出函数的增区间与减区间;(2)利用参数分离法将问题转化为在区间上同时恒成立,求出的取值范围,最终确定整数的值;(3)构造新函数,并利用导数确定函数在区间上的单调性,利用极值与端点值的将问题“关于的方程上恰有两个相异实根”进行等价转化,列出有关参数的不等式组,从而求出参数的取值范围.
试题解析:(1)由得函数的定义域为
。                  2分

函数的递增区间是;减区间是;          4分
(2)由(1)知,上递减,在上递增;
                           5分

时,                 7分
不等式恒成立,

是整数,
存在整数,使不等式恒成立        9分
(3)由
 

在[0,1]上单调递减,在[1,2]上单调递增             10分
方程在[0,2]上恰有两个相异实根
函数上各有一个零点,

实数m的取值范围是            14分
考点:1.函数的单调区间;2.函数不等式恒成立;3.函数的零点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知二次函数,且不等式的解集为.
(1)方程有两个相等的实根,求的解析式;
(2)的最小值不大于,求实数的取值范围;
(3)如何取值时,函数存在零点,并求出零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)求f(x)的单调区间;
(2)求f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的值域;
(2)若时,函数的最小值为,求的值和函数 的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若是函数的极值点,求的值;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)解不等式
(2)对于任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数的最大值为,最小值为,其中
(1)求的值(用表示);
(2)已知角的顶点与平面直角坐标系中的原点重合,始边与轴的正半轴重合,终边经过点.求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数,记.
(Ⅰ)求函数的定义域的表达式及其零点;
(Ⅱ)若关于的方程在区间内仅有一解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(Ⅰ)求函数的定义域;
(Ⅱ)若存在实数满足,试求实数的取值范围.

查看答案和解析>>

同步练习册答案