精英家教网 > 高中数学 > 题目详情

设函数的最大值为,最小值为,其中
(1)求的值(用表示);
(2)已知角的顶点与平面直角坐标系中的原点重合,始边与轴的正半轴重合,终边经过点.求的值.

(1);(2).

解析试题分析:(1)本小题主要考查二次函数图像与性质,通过判断对称轴与区间的位置关系确定最值的位置,然后代入化简来求;(2) 本小题主要考查三角函数的定义、同角三角函数基本关系式,由(1)可分析得,三角函数定义求,然后根据商的关系化为正切来求.
试题解析:(1) 由题可得     3分
所以,                6分
(2)角终边经过点,则         10分
所以, =           14分
考点:二次函数图像与性质、三角函数的定义、同角三角函数基本关系式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知椭圆的离心率,且椭圆C上一点到点Q的距离最大值为4,过点的直线交椭圆于点
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆上一点,且满足(O为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数图象上一点处的切线方程为.
(1)求的值;
(2)若方程内有两个不等实根,求的取值范围(其中为自然对数的底数);(3)令,若的图象与轴交于(其中),的中点为,求证:处的导数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)求函数的单调区间;
(2)当时,是否存在整数,使不等式恒成立?若存在,求整数的值;若不存在,请说明理由;
(3)关于的方程上恰有两个相异实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在上的函数,当时,,且对任意的 ,有
(Ⅰ)求证:
(Ⅱ)求证:对任意的,恒有
(Ⅲ)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数.若的定义域为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在半径为、圆心角为的扇形的弧上任取一点,作扇形的内接矩形,使点上,点上,设矩形的面积为

(Ⅰ)按下列要求求出函数关系式:
①设,将表示成的函数关系式;
②设,将表示成的函数关系式;
(Ⅱ)请你选用(1)中的一个函数关系式,求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求,使价格连续下跌.现有三种价格模拟函数:①;②;③.(以上三式中均为常数,且
(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由)
(2)若,求出所选函数的解析式(注:函数定义域是.其中表示8月1日,表示9月1日,…,以此类推);
(3)在(2)的条件下研究下面课题:为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月份内价格下跌.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数和点,过点作曲线的两条切线,切点分别为
(Ⅰ)设,试求函数的表达式;
(Ⅱ)是否存在,使得三点共线.若存在,求出的值;若不存在,请说明理由.
(Ⅲ)在(Ⅰ)的条件下,若对任意的正整数,在区间内总存在个实数,使得不等式成立,求的最大值.

查看答案和解析>>

同步练习册答案