精英家教网 > 高中数学 > 题目详情
已知,?x∈R,不等式sinx+cosx>m有解,求实数m的取值范围.
考点:特称命题
专题:简易逻辑
分析:将左边看成关于x的函数,然后求其最大值,要使原不等式有解,只需m小于左边的最大值即可.
解答: 解:令t=sinx+cosx=
2
sin(x+
π
4
)
,易知-
2
≤t≤
2

则要使sinx+cosx>m有解,只需m<
2
即可.
故所求m的范围是(-∞,
2
)
点评:本题考查了不等式有解的问题与函数间的关系,要注意和不等式恒成立问题的区别.属于中等难度题,要注意体会思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将函数y=sinx的图象上所有点左移
π
2
个单位所得图象对应的函数的解析式是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的程序框图,若输入的x值为0,则输出的y值为(  )
A、
3
2
B、0
C、1
D、
3
2
或0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=2sin2x图象向右平移
π
12
个单位得到y=f(x)图象,则f(x)单调递增区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非零向量
OA
OB
不共线,且
BM
=
1
3
BA
,则向量
OM
=(  )
A、
1
3
AO
-
2
3
OB
B、
2
3
AO
+
1
3
OB
C、
1
3
AO
+
2
3
OB
D、
1
3
AO
-
4
3
OB

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
3
,t),
b
=(
1
2
3
2
),且向量
c
=
a
+(tanθ-3)
b
d
=m
a
+
b
tanθ,其中m,θ均为实数.
(1)若
a
b
,试求t的值;
(2)若
a
b
,试求|
a
+
b
|;
(3)当t=-1,
c
d
时,求实数m最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(-2,0),B(2,0),点P在圆(x-3)2+(y-4)2=r2(r>0)上,满足PA2+PB2=40,若这样的点P有两个,则r的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-8lnx,g(x)=-x2+14x.
(1)求函数f(x)在点(1,f(1))处的切线方程;
(2)若方程f(x)=g(x)+m有唯一解,试求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2+(2m-1)x+m-6=0有一个根不大于-1,另一个根不小于1.
(1)求实数m的取值范围;
(2)求方程两根平方和的最值.

查看答案和解析>>

同步练习册答案