精英家教网 > 高中数学 > 题目详情
将函数y=sinx的图象上所有点左移
π
2
个单位所得图象对应的函数的解析式是
 
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:由条件利用诱导公式、函数y=Asin(ωx+φ)的图象变换规律,可得结论.
解答: 解:将函数y=sinx的图象上所有点左移
π
2
个单位所得图象对应的函数的解析式是y=sin(x+
π
2
)=cosx,
故答案为:y=cosx.
点评:本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的函数f(x)=x2+2mx+m
(1)若函数f(x)没有零点,求实数m的取值范围;
(2)当m=2时,求函数g(x)=
f(x)
x
在区间[1,2]上的最大值,并求出相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=loga(3-x)+xa的定义域
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,O是△ABC的外接圆的圆心,M是BC边的中点,AB=4,AC=2,求
AM
AO
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1是一个几何体的主视图和左视图(上面是边长为4的正三角形,下面是矩形),图2是内切于边长为4的正方形),则该几何体的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量1至4件5至8件9至12件13至16件17件以上
顾客数(人)x3025y10
结算时间(分钟/人)11.522.53
已知这100位顾客中任抽1人,购物量超过8件的顾客占55%.
(Ⅰ)求x,y的值;
(2)求这100人的平均结算时间;
(3)求这100人中,结算时间不少于2分钟的概率;
(4)将这100个人的结算时间看作一个容量为100的简单随机样本,将频率视为概率,将结算时间用x表示,对应概率用P表示,完成下表:
x11.522.53
p

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数cos2θ+i(1-tanθ)是纯虚数 则θ的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2+k在[a,b]上的值域为[ma,mb](m>0)
(1)当x≥0,k=1,m=3时,求a,b的值.
(2)当x≥0,k=1时,求m的取值范围.
(3)当x≤0,m=3时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知,?x∈R,不等式sinx+cosx>m有解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案