精英家教网 > 高中数学 > 题目详情

(1)m为何值时,f(x)=x2+2mx+3m+4.
①有且仅有一个零点;②有两个零点且均比-1大;
(2)若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围.

(1) ① m=4或m=-1;②(-5,-1);(2) (-4,0).

解析试题分析:(1) ①由函数的零点与方程根之间的关系可知函数f(x)=x2+2mx+3m+4有且仅有一个零点,等价于方程f(x)=0有两个相等实根,而此方程是关于x的一元二次方程,所以其判别式Δ=0,从而可求得m的值;②函数f(x)=x2+2mx+3m+4有两个零点且均比-1大,结合二次函数图象可知首先其判别式应大于零,同时其对称轴应在-1的右侧,并且函数在-1的函数值大于零;从而获得一个关于m的不等式组,解此不等式组即可求得m的取值范围;(2) 函数f(x)=|4x-x2|+a有4个零点等价于|4x-x2|=-a,也即函数g(x)=|4x-x2|的图象与直线y=-a有四个不同的交点,作出图象即可求出a的取值范围.
试题解析:(1)①f(x)=x2+2mx+3m+4有且仅有一个零点,即方程f(x)=0有两个相等实根,亦即Δ=0,即4m2-4(3m+4)=0,即m2-3m-4=0,∴m=4或m=-1.
②由题意,知

∴-5<m<-1.
∴m的取值范围为(-5,-1).
(2)令f(x)=0,得|4x-x2|+a=0,
即|4x-x2|=-a.
令g(x)=|4x-x2|,h(x)=-a.
作出g(x)、h(x)的图象.

由图象可知,当0<-a<4,即-4<a<0时,g(x)与h(x)的图象有4个交点,即f(x)有4个零点.故a的取值范围为(-4,0).
考点:1.函数零点的概念;2.函数的零点与方程的根及函数图象交点之间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

是已知平面上所有向量的集合,对于映射,记的象为。若映射满足:对所有及任意实数都有,则称为平面上的线性变换。现有下列命题:
①设是平面上的线性变换,则
②对,则是平面上的线性变换;
③若是平面上的单位向量,对,则是平面上的线性变换;
④设是平面上的线性变换,,若共线,则也共线。
其中真命题是                    (写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的增函数,对于任意的,都有,且满足
(1)求的值;   
(2)求满足的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数),.
(1)若在定义域上有极值,求实数的取值范围;
(2)当时,若对,总,使得,求实数的取值范围;(其中为自然对数的底数)
(3)对,且,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的单调区间;
(2)若在区间上的最小值为e,求k的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数.
(1)若在其定义域内是增函数,求b的取值范围;
(2)若,若函数在 [1,3]上恰有两个不同零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数,
(1)求的值;
( 2) 判断并证明函数的单调性;
(3)若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知函数 如果上恒成立,则的取值范围是 ________  。

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知函数,且)若实数使得函数在定义域上有零点,则的最小值为__________.    

查看答案和解析>>

同步练习册答案