精英家教网 > 高中数学 > 题目详情

(2013•重庆)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.

(1)求该椭圆的标准方程;
(2)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.

(1)   (2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

过点作一直线,使它被两直线所截的线段为中点,求此直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

把一颗骰子投掷两次,观察掷出的点数,并记第一次掷出的点数为,第二次掷出的点数为.试就方程组(※)解答下列问题:
(1)求方程组没有解的概率;
(2)求以方程组(※)的解为坐标的点落在第四象限的概率..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,射线OA、OB分别与x轴正半轴成45°和30°角,过点P(1,0)作直线AB分别交OA、OB于A、B两点,当AB的中点C恰好落在直线y=x上时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆C1和抛物线C2的焦点均在轴上,C1的中心和C2的顶点均为原点,从每条曲线上各取两点,将其坐标记录于下表中:


3
-2
4



0
-4

 
(1)求曲线C1,C2的标准方程;
(2)设直线与椭圆C1交于不同两点M、N,且。请问是否存在直线过抛物线C2的焦点F?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形.
(1)求椭圆的方程;
(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点.证明:为定值;
(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点,若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线l:x+2y-2=0,试求:
(1) 点P(-2,-1)关于直线l的对称点坐标;
(2) 直线l1:y=x-2关于直线l对称的直线l2的方程;
(3) 直线l关于点(1,1)对称的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的三个顶点(4,0),(8,10),(0,6).
(Ⅰ)求过A点且平行于的直线方程;
(Ⅱ)求过点且与点距离相等的直线方程。

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

直线的倾斜角为  ▲  

查看答案和解析>>

同步练习册答案