设椭圆C1和抛物线C2的焦点均在轴上,C1的中心和C2的顶点均为原点,从每条曲线上各取两点,将其坐标记录于下表中:
3 | -2 | 4 | ||
0 | -4 |
科目:高中数学 来源: 题型:解答题
设直线l的方程为(a+1)x+y+2-a=0(a∈R).
(1)若l在两坐标轴上截距相等,求l的方程;
(2)若l不经过第二象限,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(满分16分)如图:为保护河上古桥,规划建一座新桥,同时设立一个圆形保护区,规划要求,新桥与河岸垂直;保护区的边界为圆心在线段上并与相切的圆,且古桥两端和到该圆上任一点的距离均不少于80,经测量,点位于点正北方向60处,点位于点正东方向170处,(为河岸),.
(1)求新桥的长;
(2)当多长时,圆形保护区的面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:()过点(2,0),且椭圆C的离心率为.
(1)求椭圆的方程;
(2)若动点在直线上,过作直线交椭圆于两点,且为线段中点,再过作直线.求直线是否恒过定点,若果是则求出该定点的坐标,不是请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆C:x2+y2=9,点A(-5,0),直线l:x-2y=0.
(1)求与圆C相切,且与直线l垂直的直线方程;
(2)在直线OA上(O为坐标原点),存在定点B(不同于点A),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点B的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2013•重庆)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.
(1)求该椭圆的标准方程;
(2)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com