(满分16分)如图:为保护河上古桥,规划建一座新桥,同时设立一个圆形保护区,规划要求,新桥与河岸垂直;保护区的边界为圆心在线段上并与相切的圆,且古桥两端和到该圆上任一点的距离均不少于80,经测量,点位于点正北方向60处,点位于点正东方向170处,(为河岸),.
(1)求新桥的长;
(2)当多长时,圆形保护区的面积最大?
(1);(2).
解析试题分析:本题是应用题,我们可用解析法来解决,为此以为原点,以向东,向北为坐标轴建立直角坐标系.(1)点坐标炎,,因此要求的长,就要求得点坐标,已知说明直线斜率为,这样直线方程可立即写出,又,故斜率也能得出,这样方程已知,两条直线的交点的坐标随之而得;(2)实质就是圆半径最大,即线段上哪个点到直线的距离最大,为此设,由,圆半径是圆心到直线的距离,而求它的最大值,要考虑条件古桥两端和到该圆上任一点的距离均不少于80,列出不等式组,可求得的范围,进而求得最大值.当然本题如果用解三角形的知识也可以解决.
试题解析:
(1)如图,以为轴建立直角坐标系,则,,由题意,直线方程为.又,故直线方程为,由,解得,即,所以;
(2)设,即,由(1)直线的一般方程为,圆的半径为,由题意要求,由于,因此,∴∴,所以当时,取得最大值,此时圆面积最大.
【考点】解析几何的应用,直线方程,直线交点坐标,两点间的距离,点到直线的距离,直线与圆的位置关系.
科目:高中数学 来源: 题型:解答题
如图,函数f(x)=x+的定义域为(0,+∞).设点P是函数图象上任一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M,N.
(1)证明:|PM|·|PN|为定值;
(2)O为坐标原点,求四边形OMPN面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
把一颗骰子投掷两次,观察掷出的点数,并记第一次掷出的点数为,第二次掷出的点数为.试就方程组(※)解答下列问题:
(1)求方程组没有解的概率;
(2)求以方程组(※)的解为坐标的点落在第四象限的概率..
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆C1和抛物线C2的焦点均在轴上,C1的中心和C2的顶点均为原点,从每条曲线上各取两点,将其坐标记录于下表中:
3 | -2 | 4 | ||
0 | -4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知两直线l1:ax-by+4=0,l2:(a-1)x+y+b=0.求分别满足下列条件的a,b的值.
(1)直线l1过点(-3,-1),并且直线l1与l2垂直;
(2)直线l1与直线l2平行,并且坐标原点到l1,l2的距离相等.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com