精英家教网 > 高中数学 > 题目详情

如图,函数f(x)=x+的定义域为(0,+∞).设点P是函数图象上任一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M,N.

(1)证明:|PM|·|PN|为定值;
(2)O为坐标原点,求四边形OMPN面积的最小值.

(1)见解析    (2)+1

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,矩形的顶点为原点,边所在直线的方程为,顶点的纵坐标为
(1)求边所在直线的方程;
(2)求矩形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设直线l的方程为(a+1)x+y+2-a=0(a∈R).
(1)若l在两坐标轴上截距相等,求l的方程;
(2)若l不经过第二象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,原点为,抛物线的方程为,线段是抛物线的一条动弦.
(1)求抛物线的准线方程和焦点坐标;
(2)若,求证:直线恒过定点;
(3)当时,设圆,若存在且仅存在两条动弦,满足直线与圆相切,求半径的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分16分)如图:为保护河上古桥,规划建一座新桥,同时设立一个圆形保护区,规划要求,新桥与河岸垂直;保护区的边界为圆心在线段上并与相切的圆,且古桥两端到该圆上任一点的距离均不少于80,经测量,点位于点正北方向60处,点位于点正东方向170处,(为河岸),.

(1)求新桥的长;
(2)当多长时,圆形保护区的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆)过点(2,0),且椭圆C的离心率为
(1)求椭圆的方程;
(2)若动点在直线上,过作直线交椭圆两点,且为线段中点,再过作直线.求直线是否恒过定点,若果是则求出该定点的坐标,不是请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

过点P(1,4)引一条直线,使它在两条坐标轴上的截距为正值,且它们的和最小,求这条直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知两定点,则该直线为“A型直线”。给出下列直线,其中是“A型直线”的是_____________________
     ②     ③       ④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

将直线绕着它上面的一点逆时针旋转得直线,则直线的方程为                        

查看答案和解析>>

同步练习册答案