已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形.
(1)求椭圆的方程;
(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点.证明:为定值;
(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点,若存在,求出点的坐标;若不存在,请说明理由.
(1);(2)证明见解析;(3)存在,.
解析试题分析:(1)由椭圆的几何性质知,,结合可很快求得,这样就得出了椭圆的标准方程;(2)若,,则,因此我们要把用表示出来,先用把直线方程写出,然后与椭圆方程联立解方程组可得(注意消去得关于的二次方程,这个二次方程有一个解是,另一解是,这样很容易得到,于是有);(3)这是存在性命题,总是假设点存在,设,由题意则应该有,即,而点的坐标在(2)中已经用表示出来了,因此利用若能求出,则说明符合题意的点存在,否则就不存在.
(1),,椭圆方程为 4分
(2),设,则.
直线:,即,
代入椭圆得
,.
,
(定值). 10分
(3)设存在满足条件,则.
,,
则由得 ,从而得.
存在满足条件 16分
考点:(1)椭圆标准方程;(2)解析几何中的定值问题;(3)解析几何中的存在性命题.
科目:高中数学 来源: 题型:解答题
已知直线L:kx-y+1+2k=0.
(1)求证:直线L过定点;
(2)若直线L交x轴负半轴于点A,交y正半轴于点B,△AOB的面积为S,试求S的最小值并求出此时直线L的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直线l:kx-y+1+2k=0.
(1)求证:直线l过定点;
(2)若直线l交x轴负半轴于点A,交y正半轴于点B,△AOB的面积为S,试求S的最小值并求出此时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2013•重庆)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.
(1)求该椭圆的标准方程;
(2)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com