精英家教网 > 高中数学 > 题目详情

已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形.
(1)求椭圆的方程;
(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点.证明:为定值;
(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点,若存在,求出点的坐标;若不存在,请说明理由.

(1);(2)证明见解析;(3)存在,.

解析试题分析:(1)由椭圆的几何性质知,结合可很快求得,这样就得出了椭圆的标准方程;(2)若,则,因此我们要把表示出来,先用把直线方程写出,然后与椭圆方程联立解方程组可得(注意消去得关于的二次方程,这个二次方程有一个解是,另一解是,这样很容易得到,于是有);(3)这是存在性命题,总是假设点存在,设,由题意则应该有,即,而点的坐标在(2)中已经用表示出来了,因此利用若能求出,则说明符合题意的点存在,否则就不存在.
(1),,椭圆方程为       4分
(2),设,则.
直线:,即
代入椭圆
 
,.

(定值).               10分
(3)设存在满足条件,则.
,
则由得 ,从而得.
存在满足条件                    16分
考点:(1)椭圆标准方程;(2)解析几何中的定值问题;(3)解析几何中的存在性命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知直线L:kx-y+1+2k=0.
(1)求证:直线L过定点;
(2)若直线L交x轴负半轴于点A,交y正半轴于点B,△AOB的面积为S,试求S的最小值并求出此时直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设直线l的方程为(a∈R).
(1)若l在两坐标轴上截距相等,求l的方程;
(2)若l不经过第二象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求垂直于直线并且与曲线相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆内有一点,过点作直线交圆两点.
(1)当经过圆心时,求直线的方程;
(2)当弦被点平分时,写出直线的方程.[

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线l:kx-y+1+2k=0.
(1)求证:直线l过定点;
(2)若直线l交x轴负半轴于点A,交y正半轴于点B,△AOB的面积为S,试求S的最小值并求出此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求经过直线与直线的交点 ,且满足下列条件的直线方程
(1)与直线平行 ;
(2)与直线垂直 。

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

将一张坐标纸折叠,使得点(0,2)与点(-2,0)重合,且点(2009,2010)与点(m,n)重合,则m-n的值为   

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•重庆)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.

(1)求该椭圆的标准方程;
(2)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.

查看答案和解析>>

同步练习册答案