精英家教网 > 高中数学 > 题目详情
4.一物体在力F(x)=5x+2(x单位为m,F单位为N)的作用下,沿着与力F相同的方向从x=0处运动到x=4处,则力F所作的功是(  )
A.40B.42C.48D.52

分析 根据定积分的物理意义计算.

解答 解:W=${{∫}_{0}}^{4}(5x+2)dx$=$(\frac{5}{2}{x}^{2}+2x){{|}_{0}}^{4}$=48.
故选:C.

点评 本题考查了定积分的物理背景及应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.数列{an}中,若a1=1,a2=2,an+2=an+2,则数列的通项公式an=n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,若a=2,A=30°,B=45°,则边b的大小为(  )
A.$2\sqrt{2}$B.2C.$\sqrt{6}+\sqrt{2}$D.$\sqrt{6}+\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某班学生在一次月考中数学不及格的占16%,语文不及格的占7%,两门都不及格的占4%,已知该班某学生在月考中语文不及格,则该学生在月考中数学不及格的概率是(  )
A.$\frac{1}{4}$B.$\frac{7}{16}$C.$\frac{4}{7}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,左焦点为F(-1,0),过D(0,2)且斜率为k的直线l交椭圆于A,B两点.
(1)求椭圆C的标准方程;
(2)在y轴上,是否存在定点E,$\overrightarrow{AE}$•$\overrightarrow{BE}$恒为定值?若存在,求出E点的坐标和这个定值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若双曲线$\frac{x^2}{9}$-$\frac{y^2}{m}$=1的离心率为$\frac{{\sqrt{14}}}{3}$,则双曲线焦点F到渐近线的距离为(  )
A.2B.$\sqrt{14}$C.$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,某居民小区内建一块直角三角形草坪ABC,直角边AB=40米,AC=40$\sqrt{3}$米,扇形花坛ADE是草坪的一部分,其半径为20米,为了便于居民平时休闲散步,该小区物业管理公司将在这块草坪内铺设两条小路OM和ON,考虑到小区整体规划,要求M、N在斜边BC上,O在弧$\widehat{DE}$上,OM∥AB,ON∥AC,.
(1)设∠OAE=θ,记f(θ)=OM+ON,求f(θ)的表达式,并求出此函数的定义域;
(2)经核算,两条路每米铺设费用均为400元,如何设计θ的大小使铺路的总费用最低?并求出最低总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点P是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)右支上一点,F1、F2分别为双曲线的右、右焦点,若I为△PF1F2的内心,则S△IPF1-S△IPF2=$\frac{a}{{\sqrt{{a^2}+{b^2}}}}{S_{△I{F_1}{F_2}}}$成立.请类比该结论得出有关椭圆的一个结论并进行证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知tanα=$\frac{1}{3}$,tanβ=-$\frac{1}{7}$,α∈(0,$\frac{π}{2}$),β∈($\frac{π}{2}$,π),则2α-β的值是(  )
A.-$\frac{π}{4}$B.$\frac{π}{4}$C.-$\frac{3π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

同步练习册答案