精英家教网 > 高中数学 > 题目详情
14.已知tanα=$\frac{1}{3}$,tanβ=-$\frac{1}{7}$,α∈(0,$\frac{π}{2}$),β∈($\frac{π}{2}$,π),则2α-β的值是(  )
A.-$\frac{π}{4}$B.$\frac{π}{4}$C.-$\frac{3π}{4}$D.$\frac{3π}{4}$

分析 利用二倍角的正切公式求得tan2α的值,再利用两角差的正切公式求得tan(2α-β)的值,可得2α-β的值.

解答 解:∵tanα=$\frac{1}{3}$,tanβ=-$\frac{1}{7}$,α∈(0,$\frac{π}{2}$),
∴tan2α=$\frac{2tanα}{1{-tan}^{2}α}$=$\frac{3}{4}$<1,
∴2α∈(0,$\frac{π}{4}$).
∵β∈($\frac{π}{2}$,π),
∴2α+β∈(-π,-$\frac{π}{4}$),
tan(2α-β)=$\frac{tan2α-tanβ}{1+tan2αtanβ}$=$\frac{\frac{3}{4}+\frac{1}{7}}{1-\frac{3}{4}•(-\frac{1}{7})}$=-1,
∴2α+β=-$\frac{3π}{4}$,
故选:C.

点评 本题主要考查二倍角的正切公式,两角差的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.一物体在力F(x)=5x+2(x单位为m,F单位为N)的作用下,沿着与力F相同的方向从x=0处运动到x=4处,则力F所作的功是(  )
A.40B.42C.48D.52

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,三棱柱ABC-A1B1C1是直棱柱,AB⊥AC,AB=AC=AA1=2,点M,N分别是A1B和A1C的中点.
(1)求证:直线MN∥面ABC
(2)求三棱锥B-ACM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若集合A={x|x=$\frac{n}{3}$,n∈Z},B={x|x=n±$\frac{1}{3}$,n∈Z},C={x|x=n±$\frac{2}{3}$,n∈Z},则下列结论中正确的是(  )
A.B≠CB.A?BC.A?B=CD.A?C

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a=2${\;}^{\frac{1}{5}}$,b=($\frac{6}{7}$)${\;}^{\frac{1}{6}}$,c=ln$\frac{3}{π}$,则(  )
A.c<a<bB.c<b<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.
(I)写出直线l的普通方程和曲线C2的直角坐标方程;
(II)直线l与曲线C2交于A、B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知全集为R,集合A={x|x<-2或x>3},B={-2,0,2,4},则(∁RA)∩B=(  )
A.{-2,0,2}B.{-2,2,4}C.{-2,0,3}D.{0,2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知在等差数列{an}中,a1=3,前n项和为Sn,等比数列{bn}各项均为正数,b1=1,b2+S2=12,{bn}的公比q=$\frac{S_2}{b_2}$.
(1)求an与bn
(2)求$\frac{1}{S_1}$+$\frac{1}{S_2}$+…+$\frac{1}{S_n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A、B、C所对的边长分别为a,b,c,若a,b,c成等比数列且c=2a,则cosB 等于(  )
A.$\frac{3}{4}$B.$\frac{\sqrt{2}}{4}$C.$\frac{1}{4}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

同步练习册答案