分析 根据题意,值域y∈[0,+∞),对a进行讨论,只需函数f(x)=ax2+2(a-1)x-4的值域能[0,+∞)即可满足题意,可得实数a的取值范围.
解答 解:集合A={y|y=$\sqrt{a{x}^{2}+2(a-1)x-4}$}=[0,+∞),值域y∈[0,+∞),
只需函数f(x)=ax2+2(a-1)x-4的值域能取[0,+∞)即满足题意:
对a进行讨论:
当a=0时,f(x)=-2x-4,其值域为R,满足题意;
当a≠0时,要使值域能取[0,+∞),则需满足:
$\left\{\begin{array}{l}{a>0}\\{(a{x}^{2}+2(a-1)x-4)_{min}≤0}\end{array}\right.$,
解得:a>0.
综上所得:实数a的取值范围是[0,+∞).
点评 本题考查了复合函数值域的恒成立问题,理解题意是关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2) | B. | (0,+∞) | C. | (2,+∞) | D. | (-∞,-2)∪(2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{n}^{2}}{4}$ | B. | $\frac{(n-1)^{2}}{4}$ | C. | $\frac{n(n-1)}{4}$ | D. | $\frac{n(n+1)}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 简单随机抽样 | B. | 系统抽样 | C. | 分层抽样 | D. | 定点抽样 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(2)<f(π)<f(5) | B. | f(π)<f(2)<f(5) | C. | f(2)<f(5)<f(π) | D. | f(5)<f(π)<f(2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com