精英家教网 > 高中数学 > 题目详情
1.等差数列{an}的前n项和为Sn,若a3+a7+a11=6,则S13等于(  )
A.24B.25C.26D.27

分析 由a3+a7+a11=6,利用等差数列的性质可得:3a7=6,解得a7.再利用求和公式即可得出.

解答 解:∵等差数列{an}满足:a3+a7+a11=6,
∴3a7=6,解得a7=2.
则S13=$\frac{13({a}_{1}+{a}_{13})}{2}$=13a7=26.
故选:C.

点评 本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.(1)求函数y=$\frac{2x-1}{x+1}$,x∈[3,5]的最值;
(2)设0≤x≤2,求函数y=4${\;}^{x-\frac{1}{2}}}$-3•2x+5的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}是等比数列,且a2=4,a5=32,数列{bn}满足:对于任意n∈N*,有a1b1+a2b2+…+anbn=(n-1)•2n+1+2.
(1)求数列{an}的通项公式;
(2)若数列{dn}满足:d1=6,dn•dn+1=6a•(-$\frac{1}{2}$)${\;}^{{b}_{n}}$(a>0),设Tn=d1d2d3…dn(n∈N*),当且仅当n=8时,Tn取得最大值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设M是圆(x-5)2+(y-3)2=9上的点,直线l:3x+4y-2=0,则点M到直线l距离的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若对任意a∈[3,5]关于x的方程x2-$\frac{m}{a-1}$x-6=0在区间[3,m]上都有实数解,则实数m的取值范围是(  )
A.{m|m≥4}B.{m|m≥2$\sqrt{3}$}C.{m|m≤2$\sqrt{3}$或m≥4}D.{m|4≤m≤2$\sqrt{3}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=x+$\sqrt{2-x}$的值域为(  )
A.$(\frac{9}{4},+∞)$B.$[\frac{9}{4},+∞)$C.$(-∞,\frac{9}{4})$D.$(-∞,\frac{9}{4}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合A={y|y=$\sqrt{a{x}^{2}+2(a-1)x-4}$}=[0,+∞),则实数a的取值范围是[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.α和β是两个不重合的平面,在下列条件中可判定平面α和β平行的是(  )
A.α和β都垂直于同一平面
B.α内不共线的三点到β的距离相等
C.l,m是平面α内的直线且l∥β,m∥β
D.l,m是两条异面直线且l∥α,m∥α,m∥β,l∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),x<1}\\{{2}^{x-1},x≥1}\end{array}\right.$,f(-2)+f(log210)=(  )
A.11B.8C.5D.2

查看答案和解析>>

同步练习册答案