精英家教网 > 高中数学 > 题目详情
已知两座灯塔A和B与海洋观察站C的距离分别为a海里和2a海里,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A和B的距离为
 
海里.
考点:解三角形的实际应用
专题:应用题,解三角形
分析:先根据题意求得∠ACB,进而根据余弦定理求得AB.
解答: 解:依题意知∠ACB=180°-20°-40°=120°,
在△ABC中,由余弦定理知AB=
AC2+BC2-2AC•BC•cos120°
=
7a2
=
7
a.
即灯塔A与灯塔B的距离为
7
a.
故答案为:
7
a
点评:本题主要考查了余弦定理的应用.余弦定理可以解决知道两个边和1个角来求令一个边,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(
1
2x-1
+
1
2
)•x2
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设0<x1<x2
π
2

(Ⅰ)证明:x1>sinx1
(Ⅱ)x1sinx2cosx1>x2sinx1cosx2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+bx-alnx,
(Ⅰ) 若x=2是函数f(x)的极值点,1是函数f(x)的一个零点,求函数f(x)的解析式;
(Ⅱ) 若对任意b∈[-2,-1],都存在x∈(1,e)(e为自然对数的底数),使得f(x)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
b
满足|
a
|=1,|
b
|=2,且(
a
+
b
)⊥
a
,则
a
b
的夹角是(  )
A、
6
B、
3
C、
π
3
D、
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,小明利用有一个锐角是30°的三角板测量一棵树的高度,已知他与树之间的水平距离BE为5m,AB为1.5m(即小明的眼睛距地面的距离),那么这棵树高是(  )
A、(
5
3
3
+
3
2
)m
B、(5
3
+
3
2
)m
C、
5
3
3
m
D、4m

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:α∩β=AB,PC⊥α,PD⊥β,C、D是垂足,试判断直线AB与CD的位置关系?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

若x2+y2-x+y-m=0,表示一个圆的方程,则m的取值范围是(  )
A、m>-
1
2
B、m≥-
1
2
C、m<-
1
2
D、m>-2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在半径为
3
,圆心角为60°的扇形的弧上任取一点P,作扇形的内接矩形PNMQ,使点Q在OA上,点M,N在OB上,设矩形PNMQ的面积为y.
(1)设∠POB=θ,求y表示成θ的函数;
(2)请根据你在(1)中写出的函数解析式,求出y的最大值.

查看答案和解析>>

同步练习册答案