| A. | $\frac{1}{2}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\frac{{\sqrt{5}}}{5}$ |
分析 利用诱导公式,同角三角函数的基本关系,二倍角公式求得 tan2α的值,可得tanα的值.
解答 解:∵已知$α∈(0,\frac{π}{2}),sin(\frac{π}{4}-α)sin(\frac{π}{4}+α)=-\frac{3}{10}$,即sin($\frac{π}{4}$-α)•cos($\frac{π}{4}$-α)=-$\frac{3}{10}$,
即 $\frac{1}{2}$sin($\frac{π}{2}$-2α)=-$\frac{3}{10}$,即 $\frac{1}{2}$•cos2α=-$\frac{3}{10}$,∴cos2α=-$\frac{3}{5}$=$\frac{{cos}^{2}α{-sin}^{2}α}{{cos}^{2}α{+sin}^{2}α}$=$\frac{1{-tan}^{2}α}{1{+tan}^{2}α}$,∴tan2α=4.
再结合tanα>0,可得tanα=2,
故选:B.
点评 本题主要考查诱导公式,同角三角函数的基本关系,二倍角公式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6f(e)>2f(e3)>3f(e2) | B. | 6f(e)<3f(e2)<2f(e3) | C. | 6f(e)>3f(e2)>2f(e3) | D. | 6f(e)<2f(e3)<3f(e2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f($\frac{π}{3}$-x)=f($\frac{π}{3}$+x) | B. | f(x)+f(-x-$\frac{π}{3}$)=1 | C. | f($\frac{7π}{3}$)=2 | D. | |MN|=π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com