精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=sin(ωx+$\frac{π}{6}$)+ω (ω>0)的部分图象如图所示,则下列选项判断错误的是(  )
A.f($\frac{π}{3}$-x)=f($\frac{π}{3}$+x)B.f(x)+f(-x-$\frac{π}{3}$)=1C.f($\frac{7π}{3}$)=2D.|MN|=π

分析 利用正弦函数的图象求得函数的解析式,再利用正弦函数的图象和性质,逐一判断各个选项是否正确,从而得出结论.

解答 解:根据函数f(x)=sin(ωx+$\frac{π}{6}$)+ω (ω>0)的部分图象,可得1+ω=2,∴ω=1,f(x)=sin(x+$\frac{π}{6}$)+1.
当x=$\frac{π}{3}$时,f(x)=2,为最大值,故f(x)的图象关于直线x=$\frac{π}{3}$对称,故有f($\frac{π}{3}$-x)=f($\frac{π}{3}$+x),故A正确;
由于f(x)+f(-x-$\frac{π}{3}$)=sin(x+$\frac{π}{6}$)+1+[sin(-x-$\frac{π}{3}$+$\frac{π}{6}$)+1]=2+sin(x+$\frac{π}{6}$)-sin(x+$\frac{π}{6}$)=2,故B错误;
由于f($\frac{7π}{3}$)=sin($\frac{7π}{3}$+$\frac{π}{6}$)+1=2,故C正确;
由于|MN|=$\frac{T}{2}$=π,故D正确,
故选:B.

点评 本题主要考查正弦函数的周期性,正弦函数的图象和性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知平面向量$\overrightarrow{a}$=(k,3),$\overrightarrow{b}$=(1,4),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数k=-12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.有三种卡片分别写有数字1,10,100,从上述三种卡片中选取若干张,使得这些卡片之和为m(m为正整数).考虑不同的选法种数,例如m=11时有两种选法:“一张卡片写有1,另一张写有10”或“11张写有1的卡片”.
(1)若m=100,直接写出选法种数;
(2)设n为正整数,记所选卡片的数字和为100n的选法种数为an,当n≥2时,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥P-ABCD中,底面ABCD为正方形,PD=AD=2,△PAC为正三角形,E为PA的中点,F为线段BC上任意一点(不含端点).
(1)证明:平面CDE⊥平面AFP;
(2)是否存在点F,使得三棱锥F-PAB体积为$\frac{2}{3}$,若存在,请确定点F的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$α∈(0,\frac{π}{2}),sin(\frac{π}{4}-α)sin(\frac{π}{4}+α)=-\frac{3}{10}$,则tanα=(  )
A.$\frac{1}{2}$B.2C.$\sqrt{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.学校为了了解高三学生每天回归教材自主学习的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天回归教材自主学习的时间超过5小时的学生非常有可能在高考中缔造神奇,我们将他(她)称为“考神”,否则为“非考神”,调查结果如表:
考神非考神合计
男生262450
女生302050
合计5644100
(Ⅰ)根据表中数据能否判断有60%的把握认为“考神”与性别有关?
(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“考神”和“非考神”的人数;
(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“考神”的人数为ξ,求随机变量ξ的分布列与数学期望.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3213.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知等边△ABC的边长为2,圆A的半径为1,PQ为圆A的任意一条直径.
(1)判断$\overrightarrow{BP}•\overrightarrow{CQ}-\overrightarrow{AP}•\overrightarrow{CB}$的值是否会随点P的变化而变化,请说明理由.
(2)求$\overrightarrow{BP}•\overrightarrow{CQ}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,a,b,c分别为内角A,B,C的对边,若${a^2}-{b^2}=\sqrt{3}bc$,sinC=$2\sqrt{3}sinB$,则A等于(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求满足下列条件的解析式
(1)已知f($\frac{2}{x}+1$)=lgx,求f(x);
(2)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);

查看答案和解析>>

同步练习册答案