分析 (1)利用勾股定理逆定理证明CD⊥PD,结合CD⊥AD得出CD⊥平面PAD,故CD⊥PA,又PA⊥DE得出PA⊥平面CDE,于是平面CDE⊥平面AFP;
(2)证明PD⊥平面ABCD,代入体积公式计算BF即可得出结论.
解答
(1)证明:∵PD=AD,E是PA的中点,
∴DE⊥PA.
∵PD=CD=2,PC=AC=2$\sqrt{2}$,
∴CD⊥PD,又CD⊥AD,PD∩AD=D,
∴CD⊥平面PAD,∵PA?平面PAD,
∴CD⊥PA,
又CD∩DE=D,
∴PA⊥平面CDE,
∵PA?平面APF,
∴平面CDE⊥平面AFP.
(2)解:由(1)可知PD⊥CD,同理可得PD⊥AD,
又CD∩AD=D,
∴PD⊥平面ABCD.
∴VF-PAB=VP-ABF=$\frac{1}{3}×\frac{1}{2}×AB×BF×PD$=$\frac{2}{3}$,
即$\frac{1}{3}×\frac{1}{2}×2×BF×2$=$\frac{2}{3}$,解得BF=1.
∴F是BC的中点.
点评 本题考查了面面垂直的判定,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6f(e)>2f(e3)>3f(e2) | B. | 6f(e)<3f(e2)<2f(e3) | C. | 6f(e)>3f(e2)>2f(e3) | D. | 6f(e)<2f(e3)<3f(e2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f($\frac{π}{3}$-x)=f($\frac{π}{3}$+x) | B. | f(x)+f(-x-$\frac{π}{3}$)=1 | C. | f($\frac{7π}{3}$)=2 | D. | |MN|=π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 买房 | 不买房 | 犹豫 | 总计 | |
| 外来人口(单位:人) | 5 | 10 | 15 | 30 |
| 当地人口(单位:人) | 20 | 10 | 50 | 80 |
| 总计 | 25 | 20 | 65 | 110 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com