精英家教网 > 高中数学 > 题目详情
9.从装有红球,白球,和黑球各2个的口袋内一次取出2个球,则与事件“两球都是白球”互斥而非对立的事件是以下事件中的①②.
①两球都不是白球;          
②两球恰有一白球;
③两球至少有一个白球;      
④两球至多一个白球.

分析 在①中,“两球都不是白球”与“两球都是白球”不能同时发生,但能同时不发生; 在②中,“两球恰有一白球”与“两球都是白球”不能同时发生,但能同时不发生;在③中,“两球至少有一个白球”与“两球都是白球”能同时发生; 在④中,“两球至多一个白球”与“两球都是白球”能同时发生.

解答 解:从装有红球,白球,和黑球各2个的口袋内一次取出2个球,与事件“两球都是白球”互斥而非对立的事件是以下事件中的 ①②.
在①中,“两球都不是白球”与“两球都是白球”不能同时发生,但能同时发生,故二者是互斥而非对立的事件,故①成立;
在②中,“两球恰有一白球”与“两球都是白球”不能同时发生,但能同时发生,故二者是互斥而非对立的事件,故②成立;
在③中,“两球至少有一个白球”与“两球都是白球”能同时发生,故二者不是互斥事件,故③不成立;
在④中,“两球至多一个白球”与“两球都是白球”能同时发生,故二者不是互斥事件,故④不成立.
故答案为:①②.

点评 本题考查互斥非对立事件的求法,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知抛物线C:y2=2px(p>0)的准线与双曲线E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的两条渐近线分别交于A、B两点,若△AOB(O为坐标原点)的面积为4$\sqrt{2}$,且双曲线E的离心率为$\sqrt{3}$,则抛物线C的准线方程为(  )
A.$x=-\frac{1}{2}$B.x=-1C.$x=-\sqrt{3}$D.x=-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知平面向量$\overrightarrow{a}$=(k,3),$\overrightarrow{b}$=(1,4),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数k=-12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)为偶函数,当x<0时,f(x)=ln(-x)-ax.若直线y=x与曲线y=f(x)至少有两个交点,则实数a的取值范围是(  )
A.$[{-1-\frac{1}{e},1-\frac{1}{e}}]$B.$({-1-\frac{1}{e},-1})∪\left\{{1-\frac{1}{e}}\right\}$
C.$({1-\frac{1}{e},+∞})$D.$({-1-\frac{1}{e},-1})∪[{1-\frac{1}{e},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=lnx-ax(a>0),设$g(x)=f({\frac{2}{a}-x})$.
(1)判断函数h(x)=f(x)-g(x)零点的个数,并给出证明;
(2)首项为m的数列{an}满足:①an+1+an≠$\frac{2}{a}$;②f(an+1)=g(an).其中0<m<$\frac{1}{a},n∈{N^*}$.求证:对于任意的i,j∈N*,均有ai-aj<$\frac{1}{a}$-m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.根据如图所示的伪代码,当输入a的值为3时,输出的S值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.有三种卡片分别写有数字1,10,100,从上述三种卡片中选取若干张,使得这些卡片之和为m(m为正整数).考虑不同的选法种数,例如m=11时有两种选法:“一张卡片写有1,另一张写有10”或“11张写有1的卡片”.
(1)若m=100,直接写出选法种数;
(2)设n为正整数,记所选卡片的数字和为100n的选法种数为an,当n≥2时,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥P-ABCD中,底面ABCD为正方形,PD=AD=2,△PAC为正三角形,E为PA的中点,F为线段BC上任意一点(不含端点).
(1)证明:平面CDE⊥平面AFP;
(2)是否存在点F,使得三棱锥F-PAB体积为$\frac{2}{3}$,若存在,请确定点F的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,a,b,c分别为内角A,B,C的对边,若${a^2}-{b^2}=\sqrt{3}bc$,sinC=$2\sqrt{3}sinB$,则A等于(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

同步练习册答案